Publications by authors named "Andrea Kwakowsky"

Alzheimer's disease (AD) is a growing health problem worldwide, particularly in the developed world due to an ageing population. Glutamate excitotoxicity plays a major role in the pathophysiology of AD, and glutamate re-uptake is controlled by excitatory amino acid transporters (EAATs). The EAAT2 isoform is the predominant transporter involved in glutamate reuptake, therefore EAAT1 has not been the focus of AD research.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) primarily affects older adults, especially women, and is linked to both biological and sex-specific factors that influence its risk and progression, such as hormones and brain structure.
  • Research shows that declining estrogen levels during menopause may heighten the risk of developing AD, suggesting a potential connection between estrogen and disease onset.
  • The review examines hormone replacement therapy (HRT) as a potential preventive or therapeutic measure for AD, highlighting the need for careful consideration of individual factors like age, genetic background, and cardiovascular health when evaluating its benefits and risks.
View Article and Find Full Text PDF

Alzheimer's disease is characterized by the aggregation of β-amyloid, a pathological feature believed to drive the neuronal loss and cognitive decline commonly seen in the disease. Given the growing prevalence of this progressive neurodegenerative disease, understanding the exact mechanisms underlying this process has become a top priority. Microelectrode arrays are commonly used for chronic, non-invasive recording of both spontaneous and evoked neuronal activity from diverse in vitro disease models and to evaluate therapeutic or toxic compounds.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a neurodegenerative disease marked by chronic neuroinflammation thought to be mediated by the inflammasome pathway. Connexin 43 (Cx43) hemichannels contribute to the activation of the inflammasome through the release of adenosine triphosphate (ATP) inflammasome activation signals. The objective of the study was to evaluate if the Cx43 hemichannel blocker, tonabersat, is effective in modulating the inflammatory response and reducing disability in the myelin oligodendrocyte glycoprotein 35-55-induced experimental autoimmune encephalomyelitis (MOG EAE) model of MS.

View Article and Find Full Text PDF

Objective: Patients with Huntington's disease can present with variable difficulties of motor functioning, mood, and cognition. Neurodegeneration occurs in the anterior cingulate cortex of some patients with Huntington's disease and is linked to the presentation of mood symptomatology. Neuroinflammation, perpetrated by activated microglia and astrocytes, has been reported in Huntington's disease and may contribute to disease progression and presentation.

View Article and Find Full Text PDF

Major neurocognitive disorder (NCD) affects over 55 million people worldwide and is characterized by cognitive impairment (CI). This study aimed to develop a non-invasive diagnostic test for CI based upon retinal thickness measurements explored in a mouse model. Discrimination indices and retinal layer thickness of healthy C57BL/6J mice were quantified through a novel object recognition test (NORT) and ocular coherence tomography (OCT), respectively.

View Article and Find Full Text PDF

With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis.

View Article and Find Full Text PDF

Neurological diseases including Alzheimer's, Huntington's disease, Parkinson's disease, Down syndrome and epilepsy, and neuropsychiatric disorders such as schizophrenia, are conditions that affect not only individuals but societies on a global scale. Current therapies offer a means for small symptomatic relief, but recently there has been increasing demand for therapeutic alternatives. The γ-aminobutyric acid (GABA)ergic signaling system has been investigated for developing new therapies as it has been noted that any dysfunction or changes to this system can contribute to disease progression.

View Article and Find Full Text PDF

Glutamate is the main excitatory neurotransmitter in the human central nervous system, responsible for a wide variety of normal physiological processes. Glutamatergic metabolism and its sequestration are tightly regulated in the normal human brain, and it has been demonstrated that dysregulation of the glutamatergic system can have wide-ranging effects both in acute brain injury and neurodegenerative diseases. The excitatory amino acid transporter 2 (EAAT2) is the dominant glutamatergic transporter in the human brain, responsible for efficient removal of glutamate from the synaptic cleft for recycling within glial cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia, predicted to be the most significant health burden of the 21st century, with an estimated 131.5 million dementia patients by the year 2050. This review aims to provide an overview of the effect of caffeine on AD and cognition by summarizing relevant research conducted on this topic.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene ( HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder with an increasing need for developing disease-modifying treatments as current therapies only provide marginal symptomatic relief. Recent evidence suggests the γ-aminobutyric acid (GABA) neurotransmitter system undergoes remodeling in AD, disrupting the excitatory/inhibitory (E/I) balance in the brain. Altered expression levels of K-Cl-2 (KCC2) and N-K-Cl-1 (NKCC1), which are cation-chloride cotransporters (CCCs), have been implicated in disrupting GABAergic activity by regulating GABA receptor signaling polarity in several neurological disorders, but these have not yet been explored in AD.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. The GABA signaling system in the brain is comprised of GABA synthesizing enzymes, transporters, GABAA and GABAB receptors (GABAR and GABAR). Alterations in the expression of these signaling components have been observed in several brain regions throughout aging and between sexes in various animal models.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neuropathological disorder characterized by the presence and accumulation of amyloid-beta plaques and neurofibrillary tangles. Glutamate dysregulation and the concept of glutamatergic excitotoxicity have been frequently described in the pathogenesis of a variety of neurodegenerative disorders and are postulated to play a major role in the progression of AD. In particular, alterations in homeostatic mechanisms, such as glutamate uptake, have been implicated in AD.

View Article and Find Full Text PDF

General anaesthesia (GA) is known to affect the circadian clock. However, the mechanisms that underlie GA-induced shifting of the clock are less well understood. Activation of γ-aminobutyric acid (GABA)type A receptors (GABAR) in the suprachiasmatic nucleus (SCN) can phase shift the clock and thus GABA and its receptors represent a putative pathway via which GA exerts its effect on the clock.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Andrea Kwakowsky"

  • - Andrea Kwakowsky's recent research focuses on neurodegenerative diseases, particularly Alzheimer's disease, exploring hormonal influences and neuroinflammation as critical factors in disease progression and risk, with an emphasis on sex differences in biological mechanisms.
  • - Her work includes the investigation of β-amyloid's neurotoxic mechanisms and the role of neurotransmitter systems, such as glutamate transporters, in Alzheimer’s pathology, underscoring the need for targeted therapies.
  • - Kwakowsky also examines neuroinflammatory processes in other neurodegenerative conditions like Huntington’s disease and multiple sclerosis, providing insights on potential therapeutic targets, including targeting the NLRP3 inflammasome pathway.