Objective: G-protein-coupled receptor (GPCR) kinases (GRKs) abrogate GPCR signaling by promoting receptor desensitization and internalization. Accumulating evidence suggests that GRK2 represents an important regulator of GPCR-mediated effects on systemic glucose metabolism, obesity, and insulin resistance. Despite the key role of the liver in maintaining euglycemia, the potential metabolic relevance of hepatic GRK2 has yet to be examined.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are important signal transducers that are phosphorylated upon activation at intracellular serine and threonine residues. Although antibodies that specifically recognize the phosphorylation state of GPCRs have been available for many years, efficient immunolocalization of phosphorylated receptors in their tissues of origin has not been possible. Here, we show that phosphorylation of receptors is highly unstable during routine immunohistochemical procedures, requiring the use of appropriate phosphatase inhibitors particular during tissue perfusion, post-fixation, and cryoprotection but not during immunostaining of tissue sections.
View Article and Find Full Text PDFAnalysis of agonist-driven phosphorylation of G protein-coupled receptors (GPCRs) can provide valuable insights into the receptor activation state and ligand pharmacology. However, to date, assessment of GPCR phosphorylation using high-throughput applications has been challenging. We have developed and validated a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in multiwell cell culture plates.
View Article and Find Full Text PDFThe aim of the study was to increase the uptake of the SSTR2-targeted radioligand Lu-177-DOTATATE using the DNA methyltransferase inhibitor (DNMTi) 5-aza-2'-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The HEKsst and PC3 cells were incubated with variable concentrations of 5-aza-dC and VPA to investigate the uptake of Lu-177-DOTATATE. Cell survival, subsequent to external X-rays (0.
View Article and Find Full Text PDFMicroglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are notoriously difficult to detect in native tissues. In an effort to resolve this problem, we have developed a novel mouse model by fusing the hemagglutinin (HA)-epitope tag sequence to the amino-terminus of the µ-opioid receptor (MOP). Although HA-MOP knock-in mice exhibit reduced receptor expression, we found that this approach allowed for highly efficient immunodetection of low abundant GPCR targets.
View Article and Find Full Text PDFOpioid-associated overdoses and deaths due to respiratory depression are a major public health problem in the US and other Western countries. In the past decade, much research effort has been directed towards the development of G-protein-biased µ-opioid receptor (MOP) agonists as a possible means to circumvent this problem. The bias hypothesis proposes that G-protein signaling mediates analgesia, whereas ß-arrestin signaling mediates respiratory depression.
View Article and Find Full Text PDFFunctional ultrasound (fUS) imaging is a novel brain imaging modality that relies on the high-sensitivity measure of the cerebral blood volume achieved by ultrafast doppler angiography. As brain perfusion is strongly linked to local neuronal activity, this technique allows the whole-brain 3D mapping of task-induced regional activation as well as resting-state functional connectivity, non-invasively, with unmatched spatio-temporal resolution and operational simplicity. In comparison with fMRI (functional magnetic resonance imaging), a main advantage of fUS imaging consists in enabling a complete compatibility with awake and behaving animal experiments.
View Article and Find Full Text PDFBackground And Purpose: G protein-biased μ opioid receptor agonists have the potential to induce less receptor desensitisation and tolerance than balanced opioids. Here, we investigated if the cyclic endomorphin analogue Tyr-c[D-Lys-Phe-Tyr-Gly] (Compound 1) is a G protein-biased μ agonist and characterised its ability to induce rapid receptor desensitisation in mammalian neurones.
Experimental Approach: The signalling and trafficking properties of opioids were characterised using bioluminescence resonance energy transfer assays, enzyme-linked immunosorbent assay and phosphosite-specific immunoblotting in human embryonic kidney 293 cells.
Trends Pharmacol Sci
December 2020
G protein-biased agonists of the μ-opioid receptor (MOPr) have been proposed as an improved class of opioid analgesics. Recent studies have been unable to reproduce the original experiments in the β-arrestin2-knockout mouse that led to this proposal, and alternative genetic models do not support the G protein-biased MOPr agonist hypothesis. Furthermore, assessment of putatively biased ligands has been confounded by several factors, including assay amplification.
View Article and Find Full Text PDFBiased agonism at G protein-coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus β-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as β-arrestin recruitment. At the μ-opioid receptor (MOR), G protein-biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain.
View Article and Find Full Text PDFBuprenorphine is a commonly used opioid to treat moderate to severe pain in mice. Although strain differences regarding basal pain sensitivity and the analgesic effect of other opioids have been described for mice, the data for buprenorphine is incomplete. Hence, we investigated basal pain sensitivity and the analgesic effect of buprenorphine (0.
View Article and Find Full Text PDFBackground And Purpose: GPCRs can signal through both G proteins and β-arrestin2. For the μ-opioid receptor, early experimental evidence from a single study suggested that G protein signalling mediates analgesia, whereas β-arrestin2 signalling mediates respiratory depression and constipation. Consequently, for more than a decade, much research effort has been focused on developing biased μ-opioid agonists that preferentially target G protein signalling over β-arrestin signalling, as it was believed that such drugs would be analgesics devoid of respiratory depressant activity.
View Article and Find Full Text PDFElucidation of the molecular mechanisms underlying G protein-coupled receptor (GPCR) dephosphorylation remains a major challenge. While specific GPCR phosphatases (GRPs) have eluded identification, prevailing models propose that receptors must first internalize into acidic endosomes to become dephosphorylated in a housekeeping-like process. Recently, phosphosite-specific antibodies, combined with siRNAs targeting specific phosphatase transcripts, have facilitated the identification of distinct protein phosphatase 1 (PP1) and PP2 catalytic subunits as bona fide GRPs.
View Article and Find Full Text PDFUnlabelled: Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptor (μ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor).
View Article and Find Full Text PDFThe human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited.
View Article and Find Full Text PDFC-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) signaling is involved in ontogenesis, hematopoiesis, immune function and cancer. Recently, the orphan chemokine CXCL14 was reported to inhibit CXCL12-induced chemotaxis - probably by allosteric modulation of CXCR4. We thus examined the effects of CXCL14 on CXCR4 regulation and function using CXCR4-transfected human embryonic kidney (HEK293) cells and Jurkat T cells.
View Article and Find Full Text PDFWe have recently identified protein phosphatase 1β (PP1β) as G protein-coupled receptor (GPCR) phosphatase for the sst2 somatostatin receptor using siRNA knockdown screening. By contrast, for the sst5 somatostatin receptor we identified protein phosphatase 1γ (PP1γ) as GPCR phosphatase using the same approach. We have also shown that sst2 and sst5 receptors differ substantially in the temporal dynamics of their dephosphorylation and trafficking patterns.
View Article and Find Full Text PDFThe somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis.
View Article and Find Full Text PDFThe biological actions of somatostatin are mediated by a family of five GPCRs, named sst1 to sst5 . Somatostatin receptors exhibit equally high-binding affinities to their natural ligand somatostatin-14 and largely overlapping distributions. The overexpression of somatostatin receptors in human tumours is the molecular basis for diagnostic and therapeutic application of the stable somatostatin analogues octreotide, lanreotide and pasireotide.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2014
Signaling of G protein-coupled receptors (GPCRs) is tightly regulated by coordinated phosphorylation of intracellular serine and threonine residues. Although the mechanisms of agonist-induced phosphorylation have been deciphered for many GPCRs, the regulation of their dephosphorylation remains poorly understood. Using a combination of siRNA knockdown screening and phosphosite-specific antibodies, we have recently identified the catalytic subunit β of protein phosphatase 1 (PP1β) as major constituent of the GPCR phosphatase responsible for dephosphorylation of the sst2 somatostatin receptor.
View Article and Find Full Text PDFThe frequent overexpression of the somatostatin receptors sst2 and sst5 in neuroendocrine tumors provides the molecular basis for therapeutic application of novel multireceptor somatostatin analogs. Although the phosphorylation of the carboxyl-terminal region of the sst2 receptor has been studied in detail, little is known about the agonist-induced regulation of the human sst5 receptor. Here, we have generated phosphosite-specific antibodies for the carboxyl-terminal threonines 333 (T333) and 347 (T347), which enabled us to selectively detect either the T333-phosphorylated or the T347-phosphorylated form of sst5.
View Article and Find Full Text PDFThe newly developed multireceptor somatostatin analogs pasireotide (SOM230), octreotide and somatoprim (DG3173) have primarily been characterized according to their binding profiles. However, their ability to activate individual somatostatin receptor subtypes (sst) has not been directly assessed so far. Here, we transplanted the carboxyl-terminal phosphorylation motif of the sst(2) receptor to other somatostatin receptors and assessed receptor activation using a set of three phosphosite-specific antibodies.
View Article and Find Full Text PDFThe clinically used somatostatin (SS-14) analogs octreotide and pasireotide (SOM230) stimulate distinct species-specific patterns of sst(2A) somatostatin receptor phosphorylation and internalization. Like SS-14, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues, namely S341, S343, T353, T354, T356, and T359, which in turn leads to a robust endocytosis of both rat and human sst(2A) receptors. Unlike SS-14, pasireotide fails to induce any substantial phosphorylation or internalization of the rat sst(2A) receptor.
View Article and Find Full Text PDF