Publications by authors named "Andrea Kiessling"

Harnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities.

View Article and Find Full Text PDF

New challenges and other topics in non-clinical safety testing of biotherapeutics were presented and discussed at the nineth European BioSafe Annual General Membership meeting in November 2019. The session topics were selected by European BioSafe organization committee members based on recent company achievements, agency interactions and new data obtained in the non-clinical safety testing of biotherapeutics, for which data sharing would be of interest and considered as valuable information. The presented session topics ranged from strategies of testing, immunogenicity prediction, bioimaging, and developmental and reproductive toxicology (DART) assessments to first-in-human (FIH) dose prediction and bioanalytical challenges, reflecting the entire space of different areas of expertise and different molecular modalities.

View Article and Find Full Text PDF

Safety assessment of biological drugs has its challenges due to the multiple new different modalities, for example, antibody-drug conjugates, bispecifics, nanobodies, fusion proteins and advanced therapy medicinal products (ATMPs), their different pharmacokinetic and pharmacodynamic properties, and their ability to trigger immunogenicity and toxicity. In the public and in the pharmaceutical industry, there is a strong and general desire to reduce the number of animals used in research and development of drugs and in particular reducing the use of nonhuman primates. Important discussions and activities are ongoing investigating the smarter designs of early research and dose range finding studies, reuse of animals, and replacing animal experiments with in vitro studies.

View Article and Find Full Text PDF

With the growth of monoclonal antibodies and other proteins as major modalities in the pharmaceutical industry, there has been an increase in pharmacology and toxicity testing of biotherapeutics in animals. Animals frequently mount an immune response to human therapeutic proteins. This can result in asymptomatic anti-drug antibody formation, immune complexes that affect drug disposition and/or organ function such as kidney, cytokine release responses, fatal hypersensitivity, or a range of reactions in between.

View Article and Find Full Text PDF

Therapeutic antibodies have the potential to induce immunogenicity leading to the development of anti-drug antibodies (ADA) that consequently may result in reduced serum drug concentrations, a loss of efficacy or potential hypersensitivity reactions. Among other factors, aggregated antibodies have been suggested to promote immunogenicity, thus enhancing ADA production. Dendritic cells (DC) are the most efficient antigen-presenting cell population and are crucial for the initiation of T cell responses and the subsequent generation of an adaptive immune response.

View Article and Find Full Text PDF
Article Synopsis
  • Rozanolixizumab (UCB7665) is a monoclonal antibody designed to target and reduce harmful IgG antibodies in autoimmune and alloimmune diseases by inhibiting the neonatal Fc receptor (FcRn).
  • Studies show that this antibody effectively lowers plasma IgG levels in animal models (mice and cynomolgus monkeys) without affecting albumin levels and demonstrates a good safety profile during prolonged administration.
  • Current research includes clinical trials for conditions like immune thrombocytopenia and myasthenia gravis, suggesting rozanolixizumab could be a promising new treatment option for these diseases.
View Article and Find Full Text PDF

Biological drugs comprise a wide field of different modalities with respect to structure, pharmacokinetics and pharmacological function. Considerable non-clinical experience in the development of proteins (e.g.

View Article and Find Full Text PDF

Many monoclonal antibodies (mAbs) licensed for human use or in clinical development for cancer and autoimmune disease directly interact with the immune system. These immunomodulatory mAbs have an inherent risk of adverse immune-mediated drug reactions, including infusion reactions, cytokine storms, immunosuppression and autoimmunity. A thorough understanding of the potential for immunotoxicity of a mAb is required to support administration to humans.

View Article and Find Full Text PDF

While immunomodulatory monoclonal antibodies (mAbs) have a wide therapeutic potential, exaggerated immunopharmacology may drive both acute and delayed immunotoxicity. The existing tools for immunotoxicity assessment do not accurately predict the full range of immunotoxicities observed in humans. New and optimized models, assays, endpoints and biomarkers in animals and humans are required to safeguard patients and allow them access to these often transformational therapies.

View Article and Find Full Text PDF

Non-clinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these often innovative and complex drugs. Hot Topics in this field were discussed recently at the 4th Annual European Biosafe General Membership meeting. In this feature article, the presentations and subsequent discussions from the main sessions are summarized.

View Article and Find Full Text PDF

Subvisible proteinaceous particles which are present in all therapeutic protein formulations are in the focus of intense discussions between health authorities, academics and biopharmaceutical companies in the context of concerns that such particles could promote unwanted immunogenicity via anti-drug antibody formation. In order to provide further understanding of the subject, this study closely examines the specific biological effects proteinaceous particles may exert on dendritic cells (DCs) as the most efficient antigen-presenting cell population crucial for the initiation of the adaptive immune response. Two different model IgG antibodies were subjected to three different types of exaggerated physical stress to generate subvisible particles in far greater concentrations than the ones typical for the currently marketed biotherapeutical antibodies.

View Article and Find Full Text PDF

The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional antigen-presenting cells (APCs), which display an extraordinary capacity to induce, sustain, and regulate T-cell responses providing the opportunity of DC-based cancer vaccination strategies. Thus, clinical trials enrolling prostate cancer patients were conducted, which were based on the administration of DCs loaded with tumor-associated antigens. These clinical trials revealed that DC-based immunotherapeutic strategies represent safe and feasible concepts for the induction of immunological and clinical responses in prostate cancer patients.

View Article and Find Full Text PDF

Most therapeutic monoclonal antibodies (mAbs) licensed for human use or in clinical development are indicated for treatment of patients with cancer and inflammatory/autoimmune disease and as such, are designed to directly interact with the immune system. A major hurdle for the development and early clinical investigation of many of these immunomodulatory mAbs is their inherent risk for adverse immune-mediated drug reactions in humans such as infusion reactions, cytokine storms, immunosuppression and autoimmunity. A thorough understanding of the immunopharmacology of a mAb in humans and animals is required to both anticipate the clinical risk of adverse immunotoxicological events and to select a safe starting dose for first-in-human (FIH) clinical studies.

View Article and Find Full Text PDF

Objectives: The absence of effective therapies for advanced prostate cancer has entailed an intensive search for novel treatments. This review presents an overview of specific immunotherapeutic strategies for prostate cancer.

Methods: Current literature was reviewed regarding the identification of tumor antigens and the design of T-cell- and antibody-based immunotherapy for prostate cancer.

View Article and Find Full Text PDF

The A-ZIP/F-1 transgenic mouse is a model of lipoatrophic diabetes with severe insulin resistance, hyperglycemia and hyperlipidemia. Recently, a regulatory role of adipose tissue on adrenal gland function and blood pressure has been suggested. To further explore the importance of adipose tissue in the regulation of adrenal function and blood pressure, we studied this mouse model of lipodystrophy.

View Article and Find Full Text PDF

The development of T cell-based immunotherapies of cancer depends on the identification of tumor-associated antigens capable of eliciting tumor-directed cytotoxic T cell responses. In malignant glioma the number of well-defined target antigens for cytotoxic T lymphocytes (CTLs) is still very limited. Recently, we demonstrated the abundant and specific overexpression of the transcription factor SOX11 in malignant glioma.

View Article and Find Full Text PDF

Activation of immune defense mechanisms against tumor antigens appears to be a promising therapeutic option for advanced prostate cancer (PCa). Specific immunotherapy critically depends on target antigens that are selectively expressed in the tumorous and optional in the normal prostate tissue in sufficient amounts. Although several prostate antigens have been described and some have already been used in clinical trials, a detailed comparative evaluation of their tissue-specificity and expression levels is still lacking.

View Article and Find Full Text PDF

Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited.

View Article and Find Full Text PDF

Background: The understanding of the molecular biology of the prostate and the process of prostate carcinogenesis is brought forward by the identification and characterization of new genes specifically expressed in prostate tissue. The encoded proteins may, in addition, provide novel diagnostic and therapeutic tools in prostate carcinoma (PCa). Here, we identify the novel gene Dresden-transmembrane protein of the prostate (D-TMPP) that is overexpressed in human prostate and prostate cancer.

View Article and Find Full Text PDF

Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells.

View Article and Find Full Text PDF

Malignant glioma comprises the majority of primary human brain tumors with 16,800 new cases reported each year in the USA. Its prognosis remains dismal despite numerous attempts to improve conventional therapeutic modalities. Therefore, much effort is devoted to the exploration of alternative forms of treatment such as immunotherapy.

View Article and Find Full Text PDF

The use of molecular targets in novel strategies of tumor treatment largely depends on the identification of proteins with a tumor- or tissue-restricted expression. We identified the novel protein D-GPCR that is selectively overexpressed in human prostate cancer and prostate and belongs to the subfamily of odorant-like orphan G protein-coupled receptors. Quantification of D-GPCR transcripts in different human tissues by real-time PCR demonstrated 27-fold overexpression in prostate compared to skeletal muscle, the organ with second highest transcript numbers in males.

View Article and Find Full Text PDF