Publications by authors named "Andrea Keszthelyi"

The fork protection complex (FPC), composed of Mrc1, Tof1, and Csm3, supports rapid and stable DNA replication. Here, we show that FPC activity also introduces DNA damage by increasing DNA topological stress during replication. Mrc1 action increases DNA topological stress during plasmid replication, while Mrc1 or Tof1 activity causes replication stress and DNA damage within topologically constrained regions.

View Article and Find Full Text PDF

The highly conserved Tof1/Timeless proteins minimise replication stress and promote normal DNA replication. They are required to mediate the DNA replication checkpoint (DRC), the stable pausing of forks at protein fork blocks, the coupling of DNA helicase and polymerase functions during replication stress (RS) and the preferential resolution of DNA topological stress ahead of the fork. Here we demonstrate that the roles of the Saccharomyces cerevisiae Timeless protein Tof1 in DRC signalling and resolution of DNA topological stress require distinct N and C terminal regions of the protein, whereas the other functions of Tof1 are closely linked to the stable interaction between Tof1 and its constitutive binding partner Csm3/Tipin.

View Article and Find Full Text PDF

DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae, we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complexes cohesin and condensin are linked to both the generation and repair of DNA topological-stress-linked damage in these regions.

View Article and Find Full Text PDF

Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins.

View Article and Find Full Text PDF

Mapping the usage of replicative DNA polymerases has previously proved to be technically challenging. By exploiting mutant polymerases that incorporate ribonucleotides into the DNA with a significantly higher proficiency than their wild-type counterparts, we and others have developed methods that can identify what proportion of each DNA strand (i.e.

View Article and Find Full Text PDF

Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay.

View Article and Find Full Text PDF

The faithful replication of sister chromatids is essential for genomic integrity in every cell division. The replication machinery must overcome numerous difficulties in every round of replication, including DNA topological stress. Topological stress arises due to the double-stranded helical nature of DNA.

View Article and Find Full Text PDF

Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales.

View Article and Find Full Text PDF

Ribonucleotides are frequently misincorporated into DNA during replication, and they are rapidly repaired by ribonucleotide excision repair (RER). Although ribonucleotides in template DNA perturb replicative polymerases and can be considered as DNA damage, they also serve positive biological functions, including directing the orientation of mismatch repair. Here we describe a method for ribonucleotide identification by high-throughput sequencing that allows mapping of the location of ribonucleotides across the genome.

View Article and Find Full Text PDF

To maintain genetic stability, DNA must be replicated only once per cell cycle, and replication must be completed even when individual replication forks are inactivated. Because fork inactivation is common, passive convergence of an adjacent fork is insufficient to rescue all inactive forks. Thus, eukaryotic cells have evolved homologous recombination-dependent mechanisms to restart persistent inactive forks.

View Article and Find Full Text PDF

Three eukaryotic DNA polymerases are essential for genome replication. Polymerase (Pol) α-primase initiates each synthesis event and is rapidly replaced by processive DNA polymerases: Polɛ replicates the leading strand, whereas Polδ performs lagging-strand synthesis. However, it is not known whether this division of labor is maintained across the whole genome or how uniform it is within single replicons.

View Article and Find Full Text PDF

The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity.

View Article and Find Full Text PDF

Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood.

View Article and Find Full Text PDF

DNA must be synthesized for purposes of genome duplication and DNA repair. While the former is a highly accurate process, short-patch synthesis associated with repair of DNA damage is often error-prone. Break-induced replication (BIR) is a unique cellular process that mimics normal DNA replication in its processivity, rate, and capacity to duplicate hundreds of kilobases, but is initiated at double-strand breaks (DSBs) rather than at replication origins.

View Article and Find Full Text PDF

The basidiomycetous yeast, Filobasidium capsuligenum, produces killer toxin against the opportunistic pathogen Cryptococcus neoformans. Not every strain isolated so far is able to produce the anti cryptococcal toxin. The aim of the present work was to study the relationship between the toxins and the toxin-producing and non-producing isolates.

View Article and Find Full Text PDF

To understand the differences in the organization of mitochondrial genomes of the very closely related Aspergillus niger and Aspergillus tubingensis species, we determined the complete genome sequence of the 1a mtDNA type of A. niger and 2b mtDNA type of A. tubingensis and now we provide a comparative analysis of the two mtDNAs.

View Article and Find Full Text PDF

The organization of the mitochondrial genomes in two strains belonging in different varieties of Cryptococcus neoformans was analysed. Physical maps of the mtDNA of the IFM5844 (var. neoformans) and IFO410 (var.

View Article and Find Full Text PDF