As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best for decoding.
View Article and Find Full Text PDFOdor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating. Despite the importance of olfaction for an animal's well-being and that ortho and retro naturally occur, it is unknown how the modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed and perceived.
View Article and Find Full Text PDFThe majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.
View Article and Find Full Text PDFThe spiking variability of neural networks has important implications for how information is encoded to higher brain regions. It has been well documented by numerous labs in many cortical and motor regions that spiking variability decreases with stimulus onset, yet whether this principle holds in the OB has not been tested. In stark contrast to this common view, we demonstrate that the onset of sensory input can cause an increase in the variability of neural activity in the mammalian OB.
View Article and Find Full Text PDFUnderstanding nervous system function requires careful study of transient (non-equilibrium) neural response to rapidly changing, noisy input from the outside world. Such neural response results from dynamic interactions among multiple, heterogeneous brain regions. Realistic modeling of these large networks requires enormous computational resources, especially when high-dimensional parameter spaces are considered.
View Article and Find Full Text PDFThe structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown.
View Article and Find Full Text PDFWe examine a family of random firing-rate neural networks in which we enforce the neurobiological constraint of Dale's Law-each neuron makes either excitatory or inhibitory connections onto its post-synaptic targets. We find that this constrained system may be described as a perturbation from a system with nontrivial symmetries. We analyze the symmetric system using the tools of equivariant bifurcation theory and demonstrate that the symmetry-implied structures remain evident in the perturbed system.
View Article and Find Full Text PDFR Soc Open Sci
September 2017
We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 , 239-254.
View Article and Find Full Text PDFDetermining how synaptic coupling within and between regions is modulated during sensory processing is an important topic in neuroscience. Electrophysiological recordings provide detailed information about neural spiking but have traditionally been confined to a particular region or layer of cortex. Here we develop new theoretical methods to study interactions between and within two brain regions, based on experimental measurements of spiking activity simultaneously recorded from the two regions.
View Article and Find Full Text PDFRapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs.
View Article and Find Full Text PDFA central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate.
View Article and Find Full Text PDFDescribing the collective activity of neural populations is a daunting task. Recent empirical studies in retina, however, suggest a vast simplification in how multi-neuron spiking occurs: the activity patterns of retinal ganglion cell (RGC) populations under some conditions are nearly completely captured by pairwise interactions among neurons. In other circumstances, higher-order statistics are required and appear to be shaped by input statistics and intrinsic circuit mechanisms.
View Article and Find Full Text PDFA key step in many perceptual decision tasks is the integration of sensory inputs over time, but a fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise.
View Article and Find Full Text PDFThe mechanisms and impact of correlated, or synchronous, firing among pairs and groups of neurons are under intense investigation throughout the nervous system. A ubiquitous circuit feature that can give rise to such correlations consists of overlapping, or common, inputs to pairs and populations of cells, leading to common spike train responses. Here, we use computational tools to study how the transfer of common input currents into common spike outputs is modulated by the physiology of the recipient cells.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2010
We examine the effect of the phase-resetting curve on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy superthreshold stimulation. We use linear-response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem and contrast the results for type I vs type II models and across the different time scales over which spike correlations can be assessed. We find that, on long time scales, type I oscillators transfer correlations much more efficiently than type II oscillators.
View Article and Find Full Text PDFIn dynamical systems, configurations that permit flexible control are also prone to undesirable behavior. We study a bilateral model of the oculomotor pre-motor network that conforms with the neuroanatomical constraint that brainstem neurons project to cerebellar Purkinje cells on both sides, but Purkinje cells project back to brainstem neurons on the same side only. Bifurcation analysis reveals that this network asymmetry enables flexible control by the cerebellum of brainstem network dynamics, but small changes in connection pattern or strength lead to behavior that is unstable, oscillatory, or both.
View Article and Find Full Text PDF