Environmental factors in the early life stages can lead the descendant to adaptations in gene expression, permanently impacting several structures and organs. The amount and quality of fatty acids in the maternal diet in pregnancy and lactation were found to impact offspring metabolism. So, maternal diet and insulin resistance can affect the male and female descendants through distinct pathways and at different time points.
View Article and Find Full Text PDFJ Nutr Biochem
July 2024
Purpose: The gut-brain axis (GBA) is implicated in the development of obesity, and its role in developmental programming needs to be explored. This study uncovers the effects of a parental high-fat, high-sugar diet (HFS) on the gut (colon) and brain (hypothalamus) GBA of male Wistar rat offspring at weaning until adulthood.
Methods: For ten weeks before mating, male progenitors were fed a control diet (CD) or HFS, whereas dams were fed CD or HFS during pregnancy and lactation.
Parental nutrition can impact the health of future generations, programming the offspring for the development of diseases. The developing germ cells of the offspring could be damaged by the maternal or the paternal environment. The germ cells in development and their function could be affected by nutritional adversity and therefore, harm the health of subsequent generations.
View Article and Find Full Text PDFPurpose: Maternal nutrition during early development and paternal nutrition pre-conception can programme offspring health status. Hypothalamus adipose axis is a target of developmental programming, and paternal and maternal high-fat, high-sugar diet (HFS) may be an important factor that predisposes offspring to develop obesity later in life. This study aims to investigate Wistar rats' maternal and paternal HFS differential contribution on the development, adiposity, and hypothalamic inflammation in male offspring from weaning until adulthood.
View Article and Find Full Text PDFIonic liquids (ILs) have been proposed as more efficient and sustainable solvents to replace volatile organic solvents (VOSs). However, the drawbacks associated with their use are still limiting the regular application of bioactive compounds obtained from the processes they mediate as food ingredients. It is true that the number of ILs approved by the Food and Drug Administration for food applications is still low and mainly focused on the ones from the quaternary ammonium family.
View Article and Find Full Text PDF