T cells develop from circulating precursor cells, which enter the thymus and migrate through specialized subcompartments that support their maturation and selection. In humans, this process starts in early fetal development and is highly active until thymic involution in adolescence. To map the microanatomical underpinnings of this process in pre- and early postnatal stages, we established a quantitative morphological framework for the thymus-the Cortico-Medullary Axis-and used it to perform a spatially resolved analysis.
View Article and Find Full Text PDFIterative Bleaching Extends multipleXity (IBEX) is a versatile method for highly multiplexed imaging of diverse tissues. Based on open science principles, we created the IBEX Knowledge-Base, a resource for reagents, protocols and more, to empower innovation.
View Article and Find Full Text PDFTogether with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured bioimage data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable bioimage data sharing in the life sciences.
View Article and Find Full Text PDFFollicular lymphoma (FL) is a generally incurable malignancy that originates from developmentally blocked germinal center B cells residing, primarily, within lymph nodes (LNs). During the long natural history of FL, malignant B cells often disseminate to multiple LNs and can affect virtually any organ. Nonmalignant LNs are highly organized structures distributed throughout the body, in which they perform functions critical for host defense.
View Article and Find Full Text PDFSpatial patterns of cells and other biological elements drive both physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data.
View Article and Find Full Text PDFT cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs.
View Article and Find Full Text PDFThe lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment.
View Article and Find Full Text PDFMultiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.
View Article and Find Full Text PDFMost studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues.
View Article and Find Full Text PDFSARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants.
View Article and Find Full Text PDFHigh-content imaging is needed to catalog the variety of cellular phenotypes and multicellular ecosystems present in metazoan tissues. We recently developed iterative bleaching extends multiplexity (IBEX), an iterative immunolabeling and chemical bleaching method that enables multiplexed imaging (>65 parameters) in diverse tissues, including human organs relevant for international consortia efforts. IBEX is compatible with >250 commercially available antibodies and 16 unique fluorophores, and can be easily adopted to different imaging platforms using slides and nonproprietary imaging chambers.
View Article and Find Full Text PDFA central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing.
View Article and Find Full Text PDFTissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed.
View Article and Find Full Text PDFThe Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03346-0.
View Article and Find Full Text PDFThe diverse composition of mammalian tissues poses challenges for understanding the cell-cell interactions required for organ homeostasis and how spatial relationships are perturbed during disease. Existing methods such as single-cell genomics, lacking a spatial context, and traditional immunofluorescence, capturing only two to six molecular features, cannot resolve these issues. Imaging technologies have been developed to address these problems, but each possesses limitations that constrain widespread use.
View Article and Find Full Text PDFThe liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule.
View Article and Find Full Text PDFA hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs).
View Article and Find Full Text PDFGain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity.
View Article and Find Full Text PDFT follicular regulatory (Tfr) cells are a population of CD4 T cells that express regulatory T cell markers and have been shown to suppress humoral immunity. However, the precise mechanisms and location of Tfr-mediated suppression in the lymph node (LN) microenvironment are unknown. Using highly multiplexed quantitative imaging and functional assays, we examined the spatial distribution, suppressive function, and preferred interacting partners of Tfr cells in human mesenteric LNs.
View Article and Find Full Text PDFT cell-dependent germinal center (GC) responses require coordinated interactions of T cells with two antigen-presenting cell (APC) populations, B cells and dendritic cells (DCs), in the presence of B7- and CD40-dependent co-stimulatory pathways. Contrary to the prevailing paradigm, we found unique cellular requirements for B7 and CD40 expression in primary GC responses to vaccine immunization with protein antigen and adjuvant: B7 was required on DCs but was not required on B cells, whereas CD40 was required on B cells but not on DCs in the generation of antigen-specific follicular helper T cells, antigen-specific GC B cells, and high-affinity class-switched antibody production. There was, in fact, no requirement for coexpression of B7 and CD40 on the same cell in these responses.
View Article and Find Full Text PDF