Publications by authors named "Andrea H Auchincloss"

Unlabelled: SwissBioPics (www.swissbiopics.org) is a freely available resource of interactive, high-resolution cell images designed for the visualization of subcellular location data.

View Article and Find Full Text PDF

Motivation: The number of protein records in the UniProt Knowledgebase (UniProtKB: https://www.uniprot.org) continues to grow rapidly as a result of genome sequencing and the prediction of protein-coding genes.

View Article and Find Full Text PDF

Background: Genome and proteome annotation pipelines are generally custom built and not easily reusable by other groups. This leads to duplication of effort, increased costs, and suboptimal annotation quality. One way to address these issues is to encourage the adoption of annotation standards and technological solutions that enable the sharing of biological knowledge and tools for genome and proteome annotation.

View Article and Find Full Text PDF

Bacterial viruses, also called bacteriophages, display a great genetic diversity and utilize unique processes for infecting and reproducing within a host cell. All these processes were investigated and indexed in the ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets.

View Article and Find Full Text PDF

Viruses are genetically diverse, infect a wide range of tissues and host cells and follow unique processes for replicating themselves. All these processes were investigated and indexed in ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets.

View Article and Find Full Text PDF

HAMAP (High-quality Automated and Manual Annotation of Proteins--available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences.

View Article and Find Full Text PDF

HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences.

View Article and Find Full Text PDF

The growth in the number of completely sequenced microbial genomes (bacterial and archaeal) has generated a need for a procedure that provides UniProtKB/Swiss-Prot-quality annotation to as many protein sequences as possible. We have devised a semi-automated system, HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes), that uses manually built annotation templates for protein families to propagate annotation to all members of manually defined protein families, using very strict criteria. The HAMAP system is composed of two databases, the proteome database and the family database, and of an automatic annotation pipeline.

View Article and Find Full Text PDF

Large-scale sequencing of prokaryotic genomes demands the automation of certain annotation tasks currently manually performed in the production of the SWISS-PROT protein knowledgebase. The HAMAP project, or 'High-quality Automated and Manual Annotation of microbial Proteomes', aims to integrate manual and automatic annotation methods in order to enhance the speed of the curation process while preserving the quality of the database annotation. Automatic annotation is only applied to entries that belong to manually defined orthologous families and to entries with no identifiable similarities (ORFans).

View Article and Find Full Text PDF

Translation of the chloroplast psbC mRNA in the unicellular eukaryotic alga Chlamydomonas reinhardtii is controlled by interactions between its 547-base 5' untranslated region and the products of the nuclear loci TBC1, TBC2, and possibly TBC3. In this study, a series of site-directed mutations in this region was generated and the ability of these constructs to drive expression of a reporter gene was assayed in chloroplast transformants that are wild type or mutant at these nuclear loci. Two regions located in the middle of the 5' leader and near the initiation codon are important for translation.

View Article and Find Full Text PDF

Genetic analysis has revealed that the three nucleus-encoded factors Tbc1, Tbc2, and Tbc3 are involved in the translation of the chloroplast psbC mRNA of the eukaryotic green alga Chlamydomonas reinhardtii. In this study we report the isolation and phenotypic characterization of two new tbc2 mutant alleles and their use for cloning and characterizing the Tbc2 gene by genomic complementation. TBC2 encodes a protein of 1,115 residues containing nine copies of a novel degenerate 38-40 amino acid repeat with a quasiconserved PPPEW motif near its COOH-terminal end.

View Article and Find Full Text PDF