Publications by authors named "Andrea Gunawan"

Maintenance of hematopoietic stem cell (HSC) function in the niche is an orchestrated event. Osteomacs (OM) are key cellular components of the niche. Previously, we documented that osteoblasts, OM, and megakaryocytes interact to promote hematopoiesis.

View Article and Find Full Text PDF

Osteomacs (OM) are specialized bone-resident macrophages that are a component of the hematopoietic niche and support bone formation. Also located in the niche are a second subset of macrophages, namely bone marrow-derived macrophages (BM Mφ). We previously reported that a subpopulation of OM co-express both CD166 and CSF1R, the receptor for macrophage colony-stimulating factor (MCSF), and that OM form more bone-resorbing osteoclasts than BM Mφ.

View Article and Find Full Text PDF

Bone marrow (BM) hematopoietic stem cells (HSCs) become dysfunctional during aging (i.e., they are increased in number but have an overall reduction in long-term repopulation potential and increased myeloid differentiation) compared with young HSCs, suggesting limited use of old donor BM cells for hematopoietic cell transplantation (HCT).

View Article and Find Full Text PDF

Feeding ractopamine (RAC), a β-adrenergic agonist (BAA), to pigs increases type IIB muscle fiber type-specific protein and mRNA expression. However, increases in the abundance of these fast-twitch fiber types occur with other forms of muscle hypertrophy and thus BAA-induced changes in myosin heavy chain (MyHC) composition may simply be associated with increased muscle growth known to occur in response to BAA feeding. The objective of this study was to determine whether RAC feeding could change the MyHC gene expression in the absence of maximal muscle growth.

View Article and Find Full Text PDF

Hematopoietic stem (HSC) and progenitor (HPC) cells are regulated by interacting signals and cellular and noncellular elements of the hematopoietic niche. We previously showed that CD166 is a functional marker of murine and human HSC and of cellular components of the murine niche. Selection of murine CD166 engrafting HSC enriched for marrow repopulating cells.

View Article and Find Full Text PDF

There is a need to individualize assays for tumor molecular phenotyping, given variations in the differentiation status of tumor and normal tissues in different patients. To address this, we performed single-cell genomics of breast tumors and adjacent normal cells propagated for a short duration under growth conditions that enable epithelial reprogramming. Cells analyzed were either unselected for a specific subpopulation or phenotypically defined as undifferentiated and highly clonogenic ALDH/CD49f/EpCAM luminal progenitors, which express both basal cell and luminal cell-enriched genes.

View Article and Find Full Text PDF

mPTPB is a virulent phosphatase from Mycobacterium tuberculosis and a promising therapeutic target for tuberculosis. To facilitate mPTPB-based drug discovery, we identified α-sulfophenylacetic amide (SPAA) from cefsulodin, a third generation β-lactam cephalosporin antibiotic, as a novel pTyr pharmacophore for mPTPB. Structure-guided and fragment-based optimization of SPAA led to the most potent and selective mPTPB inhibitor 9, with a K i of 7.

View Article and Find Full Text PDF

Protein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities.

View Article and Find Full Text PDF

The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) has been implicated as a negative regulator of the proteasome, a key mediator in the ubiquitin-dependent protein degradation. Small molecule inhibitors that block UBLCP1 activity would be valuable as research tools and potential therapeutics for human diseases caused by the cellular accumulation of misfold/damaged proteins. We report a salicylic acid fragment-based library approach aimed at targeting both the phosphatase active site and its adjacent binding pocket for enhanced affinity and selectivity.

View Article and Find Full Text PDF

protein tyrosine phosphatase B (mPTPB) is a potential drug target of Tuberculosis (TB). Small molecule inhibitors of mPTPB could be a treatment to overcome emerging TB drug resistance. Using a Diversity-Oriented Synthesis (DOS) strategy, we successfully developed a salicylic acid based and drug-like mPTPB inhibitor with an IC of 2 μM and >20-fold specificity over many human PTPs, making it an excellent lead molecule for anti-TB drug discovery.

View Article and Find Full Text PDF

The Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase associated with various kinds of leukemia and solid tumors. Thus, there is substantial interest in developing SHP2 inhibitors as potential anticancer and antileukemia agents. Using a structure-guided and fragment-based library approach, we identified a novel hydroxyindole carboxylic acid-based SHP2 inhibitor 11a-1, with an IC50 value of 200 nM and greater than 5-fold selectivity against 20 mammalian PTPs.

View Article and Find Full Text PDF

Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue.

View Article and Find Full Text PDF

Lymphoid-specific tyrosine phosphatase (LYP), a member of the protein tyrosine phosphatase (PTP) family of signaling enzymes, is associated with a broad spectrum of autoimmune diseases. Herein we describe our structure-based lead optimization efforts within a 6-hydroxy-benzofuran-5-carboxylic acid series culminating in the identification of compound 8b, a potent and selective inhibitor of LYP with a K(i) value of 110 nM and more than 9-fold selectivity over a large panel of PTPs. The structure of LYP in complex with 8b was obtained by X-ray crystallography, providing detailed information about the molecular recognition of small-molecule ligands binding LYP.

View Article and Find Full Text PDF

Focused on Mtb: A facile hydroxyindole carboxylic acid based focused amide library was designed to target both the PTP active site and a unique nearby pocket for enhanced affinity and selectivity. HTS of the library led to the identification of a highly potent and selective inhibitor, 11 a, of mPTPB, an essential virulence factor for Mycobacterium tuberculosis. Compound 11 a shows high cellular activity and is capable of reversing the altered immune responses induced by mPTPB in macrophages.

View Article and Find Full Text PDF

Mycobacterium protein tyrosine phosphatase B (mPTPB) is essential for the survival and persistence of Mycobacterium in the host. Thus small molecule inhibitors of mPTPB are potential anti-TB agents. We developed an efficient organocatalytic multicomponent reaction (MCR) between pyrrole, formaldehyde and aniline, affording a potent and selective mPTPB inhibitor with an IC(50) value of 1.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (mPTPB) is a virulence factor secreted by the pathogen and mediates mycobacterial survival in macrophages by targeting host cell immune responses. Consequently, mPTPB represents an exciting new target to combat tuberculosis (TB) infection. We describe a medicinal chemistry oriented approach that transforms a benzofuran salicylic acid scaffold into a highly potent (IC(50) = 38 nM) and selective mPTPB inhibitor (>50 fold against a large panel of PTPs).

View Article and Find Full Text PDF

SHP2 phosphatase is a positive transducer of growth factor and cytokine signaling. SHP2 is also a bona fide oncogene; gain-of-function SHP2 mutations leading to increased phosphatase activity cause Noonan syndrome, as well as multiple forms of leukemia and solid tumors. We report that tautomycetin (TTN), an immunosuppressor in organ transplantation, and its engineered analog TTN D-1 are potent SHP2 inhibitors.

View Article and Find Full Text PDF

Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is a major worldwide threat to public health. Mycobacterium protein tyrosine phosphatase B (mPTPB) is a virulent phosphatase secreted by Mtb, which is essential for the survival and persistence of the bacterium in the host. Consequently, small-molecule inhibitors of mPTPB are expected to serve as anti-TB agents with a novel mode of action.

View Article and Find Full Text PDF

Yersinia pestis causes diseases ranging from gastrointestinal syndromes to bubonic plague and could be misused as a biological weapon. As its protein tyrosine phosphatase YopH has already been demonstrated as a potential drug target, we have developed two series of forty salicylic acid derivatives and found sixteen to have micromolar inhibitory activity. We designed these ligands to have two chemical moieties connected by a flexible hydrocarbon linker to target two pockets in the active site of the protein to achieve binding affinity and selectivity.

View Article and Find Full Text PDF

The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy.

View Article and Find Full Text PDF

Protein tyrosine phosphatases (PTPs) regulate a broad range of cellular processes including proliferation, differentiation, migration, apoptosis, and immune responses. Dysfunction of PTP activity is associated with cancers, metabolic syndromes, and autoimmune disorders. Consequently, small molecule PTP inhibitors should serve not only as powerful tools to delineate the physiological roles of these enzymes in vivo but also as lead compounds for therapeutic development.

View Article and Find Full Text PDF

There has been considerable interest in protein tyrosine phosphatase 1B (PTP1B) as a therapeutic target for diabetes, obesity, as well as cancer. Identifying inhibitory compounds with good bioavailability is a major challenge of drug discovery programs targeted toward PTPs. Most current PTP active site-directed pharmacophores are negatively charged pTyr mimetics which cannot readily enter the cell.

View Article and Find Full Text PDF