Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 transcription.
View Article and Find Full Text PDFBackground: Genes with multiple co-active promoters appear common in brain, yet little is known about functional requirements for these potentially redundant genomic regulatory elements. SCN1A, which encodes the Na1.1 sodium channel alpha subunit, is one such gene with two co-active promoters.
View Article and Find Full Text PDFThe chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 mice overlap pathology reported in humans with CHD8 mutations.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) and embryonal carcinoma cells (ECCs) possess the remarkable property of self-renewal and differentiation potency. They are model preparations for investigating the underlying mechanisms of "stemness". microRNAs are recently discovered small noncoding RNAs with a broad spectrum of functions, especially in control of development.
View Article and Find Full Text PDF