Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown.
View Article and Find Full Text PDFMorphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types.
View Article and Find Full Text PDFDevelopment of multicellular organisms is a complex process involving precise coordination of growth among individual cells. Understanding organogenesis requires measurements of cellular behaviors over space and time. In plants, such a quantitative approach has been successfully used to dissect organ development in both leaves and external floral organs, such as sepals.
View Article and Find Full Text PDFGynoecium development is dependent on gene regulation and hormonal pathway interactions. The phytohormones auxin and cytokinin are involved in many developmental programs, where cytokinin is normally important for cell division and meristem activity, while auxin induces cell differentiation and organ initiation in the shoot. The MADS-box transcription factor AGAMOUS (AG) is important for the development of the reproductive structures of the flower.
View Article and Find Full Text PDFDuring in vitro maize plant regeneration somatic cells change their normal fate and undergo restructuring to generate pluripotent cells able to originate new plants. Auxins are essential to achieve such plasticity. Their physiological effects are mediated by auxin response factors (ARFs) that bind auxin responsive elements within gene promoters.
View Article and Find Full Text PDFLife has always found a way to preserve itself. One strategy that has been developed for this purpose is sexual reproduction. In land plants, the gynoecium is considered to be at the top of evolutionary innovation, since it has been a key factor in the success of the angiosperms.
View Article and Find Full Text PDFWe present a simple protocol to image floral tissues with confocal laser scanning microscopy (CLSM). Recently, new imaging techniques have emerged that improve the image quality of plant tissues. In this protocol, as an example, we focus on the fluorescence detection of the miRNA MIR164c precursor.
View Article and Find Full Text PDFThe gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In , several transcription factors are known to be involved in the development of these tissues.
View Article and Find Full Text PDFGene function discovery in plants, as other plant science quests, is aided by tools that image, document, and measure plant phenotypes. Tools that acquire images of plant organs and tissues at the microscopic level have evolved from qualitative documentation tools, to advanced tools where software-assisted analysis of images extracts quantitative information that allows statistical analyses. They are useful to perform morphometric studies that describe plant physical characteristics and quantify phenotypes, aiding gene function discovery.
View Article and Find Full Text PDF