Publications by authors named "Andrea Gervasi"

Introduction: Development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors is a clinical issue in patients with epidermal growth factor receptor gene (EGFR)-mutated non-small cell lung cancer (NSCLC). The aim of this study was to investigate the potential of combining gefitinib and pemetrexed in preventing the acquisition of resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines harboring EGFR exon 19 deletion.

Methods: The effect of different combinatorial schedules of gefitinib and pemetrexed on cell proliferation, cell cycle, apoptosis, and acquisition of gefitinib resistance in PC9 and HCC827 NSCLC cell lines and in PC9 xenograft models was investigated.

View Article and Find Full Text PDF

Scaffolds for cardiac patch application must meet stringent requirements such as biocompatibility, biodegradability, and facilitate vascularization in the engineered tissue. Here, a bioactive, biocompatible, and biodegradable electrospun scaffold of poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) is proposed as a potential scaffold for cardiac patch application. The fibers are smooth bead free with average diameter = 0.

View Article and Find Full Text PDF

Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied.

View Article and Find Full Text PDF

The adult heart has the capacity to generate new myocytes that are markedly enhanced in acute and chronic heart failure of ischemic and non-ischemic origin. In addition, a pool of blood trafficking progenitor cells able to sense myocardial damage may home to the sites of injury participating to cardiac repair. This new view of myocardial biology leads to an expanding long-term research and therapeutic goals for cardioprotection.

View Article and Find Full Text PDF

Background: In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated.

View Article and Find Full Text PDF

Objectives: The aim of the present study was to characterize the biological properties and in vivo tumourigenic potential of mesenchymal cells (MCs) obtained from non-small-cell lung cancer (NSCLC) samples.

Methods: NSCLC samples (53 adenocarcinomas and 24 squamous-cell carcinomas) surgically removed from 46 males and 31 females were processed to identify mesenchymal cells from human lung cancer (hLc-MCs). hLc-MCs were separated from neoplastic epithelial cells, expanded and extensively characterized in vitro.

View Article and Find Full Text PDF