Kidney fibrosis is one of the main pathological findings of progressive chronic kidney disease (CKD) although the pathogenesis of renal scar formation remains incompletely explained. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix (ECM) and intracellular signaling pathways, is involved in several pathophysiological processes during renal damage. However, ILK contribution in the CKD progress remains to be fully elucidated.
View Article and Find Full Text PDFThe development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
April 2017
Patients with Stage 5 chronic kidney disease who are on hemodialysis (HD) remain in a chronic inflammatory state, characterized by the accumulation of uremic toxins that induce endothelial damage and cardiovascular disease (CVD). Our aim was to examine microvesicles (MVs), monocyte subpopulations, and angiopoietins (Ang) to identify prognostic markers in HD patients with or without diabetes mellitus (DM). A total of 160 prevalent HD patients from 10 centers across Spain were obtained from the Biobank of the Nephrology Renal Network (Madrid, Spain): 80 patients with DM and 80 patients without DM who were matched for clinical and demographic criteria.
View Article and Find Full Text PDFBackground: Biobanks are useful platforms to build bridges between basic, translational, and clinical research and clinical care. They are repositories of high-quality human biological samples ideal for evaluating their histological characteristics and also their genome, transcriptome, and proteome. The Spanish Renal Research Network Biobank contains more than 76,500 well-preserved frozen samples of a wide variety of kidney diseases, collected from 5450 patients seen by over 70 nephrology services throughout the Spanish territory.
View Article and Find Full Text PDFSoluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis-related proteins.
View Article and Find Full Text PDFKey Points: Patients with chronic kidney disease have a higher risk of developing cardiovascular diseases than the general population. Their vascular endothelium is dysfunctional, among other things, because it is permanently exposed to uraemic toxins, several of which have poor clearance by conventional dialysis. Recent studies have demonstrated the important role of integrin-linked kinase (ILK) in the maintenance of endothelial integrity and in this study we investigate the involvement of ILK in the mechanism underlying vascular endothelial damage that occurs in uraemia.
View Article and Find Full Text PDFBackground: Biobank certification ISO 9001:2008 aims to improve the management of processes performed. This has two objectives: customer satisfaction and continuous improvement. This paper presents the impact of certification ISO 9001:2008 on the sample transfer process in a Spanish biobank specialising in kidney patient samples.
View Article and Find Full Text PDFTNF-like weak inducer of apoptosis (TWEAK) is an inflammatory cytokine that activates the FGF-inducible 14 receptor. Both TWEAK and the FGF-inducible 14 receptor are constitutively expressed in the kidney. TWEAK has been shown to modulate several biological responses, such as inflammation, proliferation, differentiation, and apoptosis, that contribute to kidney injury.
View Article and Find Full Text PDF