Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones.
View Article and Find Full Text PDFThree-dimensional (3D) printing in the pharmaceutical field allows rapid manufacturing of a diverse range of pharmaceutical dosage forms, including personalized items. The application of this technology in dosage form manufacturing requires the judicious selection of excipients because the selected materials must be appropriate to the working principle of each technique. Most techniques rely on the use of polymers as the main material.
View Article and Find Full Text PDFThree-dimensional printing by fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) is a point of convergence of research efforts directed toward the development of personalized dosage forms. In addition to the customization in terms of shapes, sizes, or delivered drug doses, the modulation of drug release profiles is crucial to ensure the superior efficacy and safety of modern 3D-printed medications compared to those of conventional ones. Our work aims to solidify the groundwork for the preparation of 3D-printed tablets that ensure the sustained release of diclofenac sodium.
View Article and Find Full Text PDFThe present study aimed to develop 3D printed dosage forms, using custom-made filaments loaded with diclofenac sodium (DS). The printed tablets were developed by implementing a quality by design (QbD) approach. Filaments with adequate FDM 3D printing characteristics were produced via hot melt extrusion (HME).
View Article and Find Full Text PDFThe objective of this work was to develop a fused deposition modeling (FDM) 3D printed immediate release (IR) tablet with flexibility in adjusting the dose of the active pharmaceutical ingredient (API) by scaling the size of the dosage form and appropriate drug release profile steadiness to the variation of dimensions or thickness of the deposited layers throughout the printing process. Polyvinyl alcohol-based filaments with elevated API content (50% w/w) were prepared by hot melt extrusion (HME), through systematic screening of polymeric formulations with different drug loadings, and their printability was evaluated by means of mechanical characterization. For the tablet fabrication step by 3D printing (3DP), the Quality by Design (QbD) approach was implemented by employing risk management strategies and Design of Experiments (DoE).
View Article and Find Full Text PDF