Förster resonance energy transfer (FRET)-based tension sensor modules (TSMs) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET-based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3-5 pN.
View Article and Find Full Text PDFThe development of calibrated Förster resonance energy transfer (FRET)-based tension sensors has allowed the first analyses of mechanical processes with piconewton (pN) sensitivity in cells. Here, we introduce the working principle of this emerging microscopy method and discuss how it has been utilized to obtain quantitative insights into the mechanisms of intracellular force transduction in cell-matrix adhesions, cell-cell junctions, and at the cell cortex. These examples demonstrate that genetically encoded tension sensors are powerful tools to unravel force transduction mechanisms, but also indicate current limitations.
View Article and Find Full Text PDFThe ability of cells to sense and respond to mechanical forces is crucial for a wide range of developmental and pathophysiological processes. The molecular mechanisms underlying cellular mechanotransduction, however, are largely unknown because suitable techniques to measure mechanical forces across individual molecules in cells have been missing. In this article, we highlight advances in the development of molecular force sensing techniques and discuss our recently expanded set of FRET-based tension sensors that allows the analysis of mechanical forces with piconewton sensitivity in cells.
View Article and Find Full Text PDFThe inability to measure mechanical forces within cells has been limiting our understanding of how mechanical information is processed on the molecular level. In this chapter, we describe a method that allows the analysis of force propagation across distinct proteins within living cells using Förster resonance energy transfer (FRET)-based biosensors.
View Article and Find Full Text PDFThe role of post-translational tubulin modifications in the development and maintenance of a polarized epithelium is not well understood. We studied the balance between detyrosinated (detyr-) and tyrosinated (tyr-) tubulin in the formation of MDCK cell monolayers. Increased quantities of detyrosinated microtubules were detected during assembly into confluent cell sheets.
View Article and Find Full Text PDF