The lack of robust and low-cost sorbent materials still represents a formidable technological barrier for long-term storage of (renewable) thermal energy and more generally for Adsorptive Heat Transformations-AHT. In this work, we introduce a novel approach for synthesizing cement-based composite sorbent materials. In fact, considering the number of available hygrosopic salts that can be accommodated into a cementitious matrix-whose morphological properties can be also fine-tuned-the new proposed in situ synthesis paves the way to the generation of an entire new class of possible sorbents for AHT.
View Article and Find Full Text PDFThermal energy storage (TES) is a key technology to enhance the efficiency of energy systems as well as to increase the share of renewable energies. In this context, the present paper reports a literature review of the recent advancement in the field of adsorption TES systems. After an initial introduction concerning different heat storage technologies, the working principle of the adsorption TES is explained and compared to other technologies.
View Article and Find Full Text PDF