A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs.
View Article and Find Full Text PDFRecent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate.
View Article and Find Full Text PDFBackground And Purpose: This study investigated the reno-protective effects of a highly selective ATR agonist peptide, β-ProAng III in a mouse model of acute kidney injury (AKI).
Methods: C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either β-ProAng III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity.
Induced pluripotent stem cells (iPSCs) hold enormous potential in the field of regenerative medicine due to their pluripotent properties, where they can give rise to all cell types in the body. Here we describe a detailed 20-day culture and differentiation protocol to generate iPSC-derived podocytes grown as a monolayer. These iPSC-derived podocytes appear arborised by morphology and express podocyte-specific markers.
View Article and Find Full Text PDFThe in vivo engraftment of induced pluripotent stem cell (iPSC)-derived podocytes following allogeneic transplantation into host kidneys remains a challenge. Here we investigate the survival and engraftment of human dermal fibroblasts-derived differentiated iPSCs using a newborn mouse model, which represents a receptive immunoprivileged host environment. iPSCs were generated from skin biopsies of patients using Sendai virus reprogramming.
View Article and Find Full Text PDFObjectives: Primary cilia are sensory organelles which co-ordinate several developmental/repair pathways including hedgehog signalling. Studies of human renal allografts suffering acute tubular necrosis have shown that length of primary cilia borne by epithelial cells doubles throughout the nephron and collecting duct, and then normalises as renal function returns. Conversely the loss of primary cilia has been reported in chronic allograft rejection and linked to defective hedgehog signalling.
View Article and Find Full Text PDFBackground: Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia.
Method: Newborn mice were exposed to 90% O (hyperoxia) or 21% O (normoxia) from postnatal days 0-4.
The regulatory role of a novel miRNA, , was determined in the development of fibrosis through repression of the MAPK1 pathway, and fibrotic gene expression was examined in streptozotocin (STZ)-induced diabetic mice at 18 weeks or in unilateral ureteral obstruction (UUO) mice at 7 days. transfection of proximal tubular epithelial cells, NRK52E and mesangial cells was assessed with/without endogenous knockdown using the locked nucleic acid (LNA) inhibitor. NRK52E cells were co-transfected with the mothers against decapentaplegic homolog 3 (SMAD3) CAGA reporter and in the presence of transforming growth factor-β (TGF-β1) was assessed.
View Article and Find Full Text PDFBackground And Aim: Kidney ischemia/reperfusion (IR) injury is characterized by tubular epithelial cell (TEC) death and an inflammatory response involving cytokine production and immune cell infiltration. In various kidney diseases, increased macrophage numbers correlate with injury severity and poor prognosis. However, macrophage plasticity enables a diverse range of functions, including wound healing, making them a key target for novel therapies.
View Article and Find Full Text PDFThe advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-β1, and TGF-β type 1 receptor (TGF-βR1) in UUO kidneys, compared with controls.
View Article and Find Full Text PDFAim: Macrophage infiltration contributes to the pathogenesis of Type 2 diabetes. Mesenchymal stem cells (MSCs) possess immunomodulatory properties, making them an ideal candidate for therapeutic intervention. This study investigated whether MSCs can modulate the phenotype of monocytes isolated from Type 2 diabetic patients with end-stage renal disease.
View Article and Find Full Text PDFChronic kidney disease (CKD) results from the development of fibrosis, ultimately leading to end-stage renal disease (ESRD). Although human bone marrow-derived mesenchymal stem cells (MSCs) can accelerate renal repair following acute injury, the establishment of fibrosis during CKD may affect their potential to influence regeneration capacity. Here we tested the novel combination of MSCs with the antifibrotic serelaxin to repair and protect the kidney 7 d post-unilateral ureteral obstruction (UUO), when fibrosis is established.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced their homing patterns following administration to mice with ischemia-reperfusion (IR) injury using whole body bioluminescence imaging. The effect of MSCs on macrophage phenotype following direct and indirect coculture was assessed using qPCR.
View Article and Find Full Text PDFPolychromatic flow cytometry is a powerful tool for assessing populations of cells in the kidney through times of homeostasis, disease and tissue remodeling. In particular, macrophages have been identified as having central roles in these three settings. However, because of the plasticity of myeloid cells it has been difficult to define a specific immunophenotype for these cells in the kidney.
View Article and Find Full Text PDFMesenchymal stem cells are a heterogeneous population of fibroblast-like stromal cells that have been isolated from the bone marrow and a number of organs and tissues including the kidney. They have multipotent and self-renewing properties and can differentiate into cells of the mesodermal lineage. Following their administration in vivo, mesenchymal stem cells migrate to damaged kidney tissue where they produce an array of anti-inflammatory cytokines and chemokines that can alter the course of injury.
View Article and Find Full Text PDF