Publications by authors named "Andrea Eschemann"

In standard laboratory strains of the obligate aerobic yeast Yarrowia lipolytica, respiratory chain complex I (proton-translocating NADH : ubiquinone oxidoreductase) is an essential enzyme, since alternative NADH dehydrogenase activity is located exclusively at the external face of the mitochondrial inner membrane. Deletions and other loss-of-function mutations in genes for nuclear coded subunits of complex I can be obtained only when an internal version of the latter enzyme, termed NDH2i, is introduced. In contrast to recent findings with Neurospora crassa, external alternative NADH dehydrogenase activity is dispensable in complex I deletion strains of Y.

View Article and Find Full Text PDF

Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities.

View Article and Find Full Text PDF

Growth and chemotactic behavior in oxic-anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen-sulfide counter-gradients within tubes filled with agar-solidified medium. The immobilized cells grew mainly in the anoxic zone, revealing a peak below the oxic-anoxic interface.

View Article and Find Full Text PDF