Publications by authors named "Andrea Elizabeth Wills"

Background: Xenopus embryos and tadpoles are versatile models for embryological, cell biological, and regenerative studies. Genomic and transcriptomic approaches have been increasingly employed in these frogs. Most of these genome-wide analyses have profiled tissues in bulk, but there are many scenarios where isolation of single cells may be advantageous, including isolation of a preferred cell type, or generation of a single-cell suspension for applications such as scRNA-Seq.

View Article and Find Full Text PDF

Vertebrate appendage regeneration requires precisely coordinated remodeling of the transcriptional landscape to enable the growth and differentiation of new tissue, a process executed over multiple days and across dozens of cell types. The heterogeneity of tissues and temporally-sensitive fate decisions involved has made it difficult to articulate the gene regulatory programs enabling regeneration of individual cell types. To better understand how a regenerative program is fulfilled by neural progenitor cells (NPCs) of the spinal cord, we analyzed -expressing NPCs isolated from regenerating tails.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: