Publications by authors named "Andrea Dimet-Wiley"

Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the effects of Nicotinamide N-methyltransferase inhibitors (NNMTis) on improving muscle strength and regenerative capacity in aged mice, addressing sarcopenia's key symptoms like muscle weakness.
  • - Aged mice treated with NNMTi showed a significant increase in grip strength (40%) compared to controls, while those that exercised showed only a 20% increase; combining both treatments led to a 60% increase in grip strength.
  • - Detailed analyses uncovered unique molecular mechanisms from NNMTi treatment alone and a combination of NNMTi and exercise, indicating that NNMTi could effectively treat sarcopenia and other age-related muscle issues.
View Article and Find Full Text PDF

Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks.

View Article and Find Full Text PDF

Background: Hip fracture in older adults is tied to increased mortality risk. Deconvolution of the mortality risk specific to hip fracture from that of various other fracture types has not been performed in recent hip fracture studies but is critical to determining current unmet needs for therapeutic intervention.

Objective: This study examined whether hip fracture increases the 1-year postfracture mortality rate relative to several other fracture types and determined whether dementia or type 2 diabetes (T2D) exacerbates postfracture mortality risk.

View Article and Find Full Text PDF

Treatment with a nicotinamide N-methyltransferase inhibitor (NNMTi; 5-amino-1-methylquinolinium) combined with low-fat diet (LD) promoted dramatic whole-body adiposity and weight loss in diet-induced obese (DIO) mice, rapidly normalizing these measures to age-matched lean animals, while LD switch alone was unable to restore these measures to age-matched controls in the same time frame. Since mouse microbiome profiles often highly correlate with body weight and fat composition, this study was designed to test whether the cecal microbiomes of DIO mice treated with NNMTi and LD were comparable to the microbiomes of age-matched lean counterparts and distinct from microbiomes of DIO mice maintained on a high-fat Western diet (WD) or subjected to LD switch alone. There were minimal microbiome differences between lean and obese controls, suggesting that diet composition and adiposity had limited effects.

View Article and Find Full Text PDF

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22-24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation.

View Article and Find Full Text PDF