The exposome encompasses the total exposure an individual experiences throughout their life, comprising components influenced by the person's genetic, epigenetic and intrinsic and age-related traits (healthy ENDO-exposome), as well as diet, environmental factors and pollutants, habits, and socio-cultural and socio-economic aspects (ECTO-exposome). These elements interact and impact the organism, potentially leading to diseases (unhealthy ENDO-exposome). Metabolic diseases and cancer are a priority for research due to their rising prevalence.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate).
View Article and Find Full Text PDFFatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied.
View Article and Find Full Text PDFInsulin resistance (IR) refers to a reduction in the ability of insulin to exert its metabolic effects in organs such as adipose tissue (AT) and skeletal muscle (SM), leading to chronic diseases such as type 2 diabetes, hepatic steatosis, and cardiovascular diseases. Obesity is the main cause of IR, however not all subjects with obesity develop clinical insulin resistance, and not all clinically insulin-resistant people have obesity. Recent evidence implies that IR onset is tissue-dependent (AT or SM) and/or substrate-specific (glucometabolic or lipometabolic).
View Article and Find Full Text PDFAims: Arsenic is a risk factor for type 2 diabetes and cardiovascular disease. However, little is known about arsenic effects over adipocyte endocrine functionality, particularly for leptin and adiponectin, and about its interaction with dietary components, which are the main environmental regulators of adipose tissue functionality. The aim of this work was to evaluate leptin and adiponectin in mature 3T3-L1 adipocytes exposed to palmitate (simulating excess fat intake), arsenite, or both throughout two different stages of adipogenesis.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
May 2021
Using a rabbit model, we investigated whether maternal intake of a high-fat and high-carbohydrate diet (HFCD) before and during pregnancy induces an increase in micronuclei frequency and oxidative stress in offspring during adulthood. Female rabbits received a standard diet (SD) or HFCD for two months before mating and during gestation. The offspring from both groups were nursed by foster mothers fed SD until postnatal day 35.
View Article and Find Full Text PDFMetabolic parameters ranging from circulating nutrient levels and substrate utilization to energy expenditure and thermogenesis are temporally modulated by the circadian timing system. During critical embryonic developmental periods, maternal over-nutrition could alter key elements in different tissues associated with the generation of circadian rhythmicity, compromising normal rhythmicity development. To address this issue, we determine whether maternal over-nutrition leads to alterations in the development of circadian rhythmicity at physiological and behavioral levels in the offspring.
View Article and Find Full Text PDFBackground And Aims: CAPN10 gene is associated with type 2 diabetes (T2D). Specific members of the calpain system (CAPN1, CAPN2 and CAPN10) are implicated in glucose metabolism. The aim of this study was to evaluate the calpain activity in leukocytes of control subjects and patients with T2D and its association with the calpain family members involved in glucose metabolism and with biochemical parameters that are altered in T2D.
View Article and Find Full Text PDFBackground: A low-protein diet increases the expression and circulating concentration of FGF21. FGF21 stimulates the browning process of WAT by enhancing the expression of UCP1 coupled with an increase in PGC1α. Interestingly, the consumption of a low-protein diet could stimulate WAT differentiation into beige/brite cells by increasing FGF21 expression and mRNA abundance.
View Article and Find Full Text PDFSubcutaneous (SAT) and visceral (VAT) adipose tissues stores excess energy as triglycerides and synthesize adiponectin to prevent ectopic lipid accumulation and lipotoxicity. During obesity, an impairment in the capacity of SAT to store triglycerides and synthesize adiponectin is associated with increased free fatty acids (FFA) release, leading to VAT hypertrophy and hepatic and skeletal muscle lipotoxicity. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) may be involved in SAT dysfunction during obesity.
View Article and Find Full Text PDFScope: Hyperglucagonemia contributes to hyperglycemia in type 2 diabetes (T2D). Previously, we have found that soy protein normalized fasting hyperglucagonemia in obese Zucker (fa/fa) rats, sensitizing the HSL-lipolytic signaling pathway in white adipose tissue (WAT), however the mechanism remains unknown.
Methods And Results: Zucker (fa/fa) rats were fed casein or soy protein diet in combination with soybean or coconut oil.
Mol Cell Endocrinol
September 2017
The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes.
View Article and Find Full Text PDFLong-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD).
View Article and Find Full Text PDFBackground: The study of NAFLD in humans has several limitations. Using murine models helps to understand disease pathogenesis.
Aim: Evaluate the impact of 4 different diets in the production of NAFLD with emphasis on a combined high-fat plus sustained high sucrose consumption.
Recent evidence indicates that several metabolic abnormalities developed during obesity are associated with the presence of dysfunctional adipose tissue. Diet is a key factor that modulates several functions of adipose tissue; however, each nutrient in the diet produces specific changes. Thus, the aim of this work was to study the effect of the interaction of the type (coconut or soybean oil) and amount (5% or 10%) of fat with the type of dietary protein (casein or soy protein) on the functionality of white adipose tissue of Zucker (fa/fa) rats.
View Article and Find Full Text PDFThe incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs) in the calpain-10 gene (CAPN-10), which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs) through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM.
View Article and Find Full Text PDFNuclear receptors are ligand-activated transcriptional regulators of several key aspects of renal physiology and pathophysiology. As such, nuclear receptors control a large variety of metabolic processes, including kidney lipid metabolism, drug clearance, inflammation, fibrosis, cell differentiation, and oxidative stress. Derangement of nuclear receptor regulation, that is, mainly due to obesity may induce metabolic syndrome, may contribute to the pathogenesis and progression of chronic renal disease and may result in end-stage renal disease.
View Article and Find Full Text PDFBackground And Aims: Dietary fat plays a central role in the development of obesity. However, the metabolic consequences of dietary fat can vary depending on their fatty acid composition. Therefore, the aim of the present work was to study the effect of the type and amount of dietary fat on the expression of genes controlling lipogenesis and fatty acid oxidation in the liver or adipose tissue of rats.
View Article and Find Full Text PDFAn increase in the prevalence of type 2 diabetes has been consistently observed among residents of high arsenic exposure areas. We have previously shown that in rat pancreatic beta-cells, low arsenite doses impair the secretion of insulin without altering its synthesis. To further study the mechanism by which arsenite reduces insulin secretion, we evaluated the effects of arsenite on the calcium-calpain pathway that triggers insulin exocytosis in RINm5F cells.
View Article and Find Full Text PDFCalpains are nonlysosomal calcium-dependent cysteine proteases that participate in insulin secretion and action. Polymorphisms in the calpain-10 gene have been shown to increase the risk for type 2 diabetes. Since white blood cells have been used to study glucose homeostasis, the present study was carried to find out if calpains have different activity and/or expression in accessible cells such as lymphocytes of individuals with or without type 2 diabetes.
View Article and Find Full Text PDFChronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes.
View Article and Find Full Text PDFHuman studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic beta-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic beta-cells.
View Article and Find Full Text PDFBackground: Familial hypercholesterolemia (FH) and familial defective apolipoprotein B-100 (FDB) are relatively common lipid disorders caused by mutations of the low-density lipoprotein receptor (LDLR) and apolipoprotein B (apoB) genes, respectively. A third locus on chromosome 1p34.1-p32 was recently linked to FH and the responsible gene has been identified [protein convertase subtilisin/kexin type 9 (PCSK9)].
View Article and Find Full Text PDFThe present study determines the regulatory mechanisms that operate on Rhizobium etli glutaminase A. glsA gene expression levels were evaluated under several metabolic conditions by fusions of the glsA gene promoter and the transcriptional reporter cassette uidA2-aad. glsA expression was directly correlated to the glutaminase A activity found under the tested growth conditions, reaching its maximum level in the presence of glutamine and during exponential growth phase.
View Article and Find Full Text PDFDiverse forms of pathologies can be derived from the lack of flexibility in tissues and the absence of required concentrations of certain types of proteins (e.g., amelogenesis imperfecta).
View Article and Find Full Text PDF