To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of β-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro.
View Article and Find Full Text PDFIntegrins are ubiquitous cell-surface heterodimers that are exploited by pathogens and toxins, including leukotoxins that target β integrins on phagocytes. The Bordetella adenylate cyclase toxin (ACT) uses the αβ integrin as a receptor, but the structural basis for integrin binding and neutralization by antibodies is poorly understood. Here, we use cryoelectron microscopy to determine a 2.
View Article and Find Full Text PDFproduces an array of virulence factors, including the adenylate cyclase toxin (ACT), which is essential, immunogenic in humans, and highly conserved. Despite mediating immune-evasive functions as a leukotoxin, ACT's potential role as a protective antigen is unclear. To better understand the contributions of humoral anti-ACT immunity, we evaluated protection against Bordetella pertussis by antibodies binding structurally defined ACT epitopes in a mouse pneumonia model.
View Article and Find Full Text PDFInfection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin's role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated. We recently developed a prefusion-stabilized spike variant, termed HexaPro for six stabilizing proline substitutions, that can be expressed with a yield of >30 mg/L in ExpiCHO cells.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion protein that is metastable and difficult to produce recombinantly in large quantities. Here, we designed and expressed over 100 structure-guided spike variants based upon a previously determined cryo-EM structure of the prefusion SARS-CoV-2 spike.
View Article and Find Full Text PDFPertussis continues to cause considerable infant mortality world-wide, which could be addressed in part by passive immunization strategies. Antibody hu1B7 is a candidate therapeutic that potently neutralizes pertussis toxin in vitro, prevents leukocytosis in mice and treats established disease in weanling baboons as part of an antibody cocktail. Here, we evaluated the potential for hu1B7 and an extended half-life hu1B7 variant to prevent death, leukocytosis and other clinical symptoms in a newborn baboon model that mimics many aspects of human disease.
View Article and Find Full Text PDFPertussis toxin (PTx) is a major protective antigen produced by Bordetella pertussis that is included in all current acellular vaccines. Of several well-characterized monoclonal antibodies binding this toxin, the humanised hu1B7 and hu11E6 antibodies are highly protective in multiple in vitro and in vivo assays. In this study, we determine the molecular mechanisms of protection mediated by these antibodies.
View Article and Find Full Text PDFis the primary causative agent of pertussis (whooping cough), which is a respiratory infection that leads to a violent cough and can be fatal in infants. There is a need to develop more effective vaccines because of the resurgence of cases of pertussis in the United States since the switch from the whole-cell pertussis vaccines (wP) to the acellular pertussis vaccines (aP; diphtheria-tetanus-acellular-pertussis vaccine/tetanus-diphtheria-pertussis vaccine). Adenylate cyclase toxin (ACT) is a major virulence factor of that is (i) required for establishment of infection, (ii) an effective immunogen, and (iii) a protective antigen.
View Article and Find Full Text PDFDespite high vaccination rates, the incidence of whooping cough has steadily been increasing in developing countries for several decades. The current acellular pertussis (aP) vaccines all include the major protective antigen pertussis toxin (PTx) and are safer, but they appear to be less protective than infection or older, whole-cell vaccines. To better understand the attributes of individual antibodies stimulated by aP, we isolated plasmablast clones recognizing PTx after booster immunization of two donors.
View Article and Find Full Text PDFUnderstanding protein stability is central to combatting protein aggregation diseases and developing new protein therapeutics. At the high concentrations often present in biological systems, purified proteins can exhibit undesirable high solution viscosities and poor solubilities mediated by short-range electrostatic and hydrophobic protein-protein interactions. The interplay between protein amino acid sequence, protein structure, and solvent conditions to minimize protein-protein interactions is key to designing well-behaved pharmaceutical proteins.
View Article and Find Full Text PDF