Women harboring heterozygous germline mutations of have a 50 to 80% risk of developing breast cancer, yet the pathogenesis of these cancers is poorly understood. To reveal early steps in -associated carcinogenesis, we analyzed sorted cell populations from freshly-isolated, non-cancerous breast tissues of mutation carriers and matched controls. Single-cell whole-genome sequencing demonstrates that >25% of carrier ( ) luminal progenitor (LP) cells exhibit sub-chromosomal copy number variations, which are rarely observed in non-carriers.
View Article and Find Full Text PDFImportance: The practice of genetic testing for hereditary breast and/or ovarian cancer (HBOC) is rapidly evolving owing to the recent introduction of multigene panels. While these tests may identify 40% to 50% more individuals with hereditary cancer gene mutations than does testing for BRCA1/2 alone, whether finding such mutations will alter clinical management is unknown.
Objective: To define the potential clinical effect of multigene panel testing for HBOC in a clinically representative cohort.
Gene panels for hereditary breast and ovarian cancer risk assessment are gaining acceptance, even though the clinical utility of these panels is not yet fully defined. Technical questions remain, however, about the performance and clinical interpretation of gene panels in comparison with traditional tests. We tested 1105 individuals using a 29-gene next-generation sequencing panel and observed 100% analytical concordance with traditional and reference data on >750 comparable variants.
View Article and Find Full Text PDF