A transient carbon-centered hydroperoxyalkyl intermediate (•QOOH) in the oxidation of cyclopentane is identified by IR action spectroscopy with time-resolved unimolecular decay to hydroxyl (OH) radical products that are detected by UV laser-induced fluorescence. Two nearly degenerate •QOOH isomers, β- and γ-QOOH, are generated by H atom abstraction of the cyclopentyl hydroperoxide precursor. Fundamental and first overtone OH stretch transitions and combination bands of •QOOH are observed and compared with anharmonic frequencies computed by second-order vibrational perturbation theory.
View Article and Find Full Text PDFDespite extensive experimental and theoretical studies on the kinetics of the O(P) + CH (toluene) reaction and a pioneering crossed molecular beam (CMB) investigation, the branching fractions (BFs) of the CHCHO(methylphenoxy) + H, CHO(phenoxy) + CH, and spin-forbidden CHCH (methylcyclopentadiene) + CO product channels remain an open question, which has hampered the proper inclusion of this important reaction in the chemical modelling of various chemical environments. We report a CMB study with universal soft electron-ionization mass-spectrometric detection of the reactions O(P,D) + toluene at the collision energy of 34.7 kJ mol.
View Article and Find Full Text PDFUnderstanding the reactivities of methylcyclopentadiene and the methylcyclopentadienyl radical is important in order to improve our comprehension of the chemical kinetics leading to the formation, decomposition, and growth of the first aromatic ring, as it has been shown that five-membered-ring species are important intermediates in the reaction kinetics of aromatic species. In this work, the rate constants of some key H-abstraction reactions from methylcyclopentadiene to produce the methylcyclopentadienyl radical and the formation of fulvene and benzene from the latter are theoretically determined. Rate constants are evaluated using the ab initio transition state theory-based master equation approach, determining structures and Hessians of all stationary points at the ωB97X-D/aug-cc-pVTZ level, energies at the CCSD(T) level extrapolated to the complete basis set limit, RRKM rate constants using conventional and variational transition state theory, and phenomenological rate constants through the solution of the one-dimensional master equation.
View Article and Find Full Text PDF