To improve reliability of metabolite quantification at both, 3 T and 7 T, we propose a novel parametrized macromolecules quantification model (PRaMM) for brain H MRS, in which the ratios of macromolecule peak intensities are used as soft constraints. Full- and metabolite-nulled spectra were acquired in three different brain regions with different ratios of grey and white matter from six healthy volunteers, at both 3 T and 7 T. Metabolite-nulled spectra were used to identify highly correlated macromolecular signal contributions and estimate the ratios of their intensities.
View Article and Find Full Text PDFBackground: Associations between longitudinal changes of plasma biomarkers and cerebral magnetic resonance (MR)-derived measurements in Alzheimer's disease (AD) remain unclear.
Methods: In a study population (n = 127) of healthy older adults and patients within the AD continuum, we examined associations between longitudinal plasma amyloid beta 42/40 ratio, tau phosphorylated at threonine 181 (p-tau181), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and 7T structural and functional MR imaging and spectroscopy using linear mixed models.
Results: Increases in both p-tau181 and GFAP showed the strongest associations to 7T MR-derived measurements, particularly with decreasing parietal cortical thickness, decreasing connectivity of the salience network, and increasing neuroinflammation as determined by MR spectroscopy (MRS) myo-inositol.
Purpose: This observational study aims to provide a detailed clinical and imaging characterization/workup of acute intracerebral hemorrhage (ICH) due to either an underlying metastasis (mICH) or brain tumor (tICH) lesion.
Methods: We conducted a retrospective, single-center study, evaluating patients presenting with occult ICH on initial CT imaging, classified as tICH or mICH on follow-up MRI imaging according to the H-Atomic classification. Demographic, clinical and radiological data were reviewed.
Background: A study was undertaken to assess the effectiveness of open-source large language models (LLMs) in extracting clinical data from unstructured mechanical thrombectomy reports in patients with ischemic stroke caused by a vessel occlusion.
Methods: We deployed local open-source LLMs to extract data points from free-text procedural reports in patients who underwent mechanical thrombectomy between September 2020 and June 2023 in our institution. The external dataset was obtained from a second university hospital and comprised consecutive cases treated between September 2023 and March 2024.
Background: Participation in multimodal leisure activities, such as playing a musical instrument, may be protective against brain aging and dementia in older adults (OA). Potential neuroprotective correlates underlying musical activity remain unclear.
Objective: This cross-sectional study investigated the association between lifetime musical activity and resting-state functional connectivity (RSFC) in three higher-order brain networks: the Default Mode, Fronto-Parietal, and Salience networks.
Purpose: To improve reliability of metabolite quantification at both, 3 T and 7 T, we propose a novel parametrized macromolecules quantification model (PRaMM) for brain H MRS, in which the ratios of macromolecule peak intensities are used as soft constraints.
Methods: Full- and metabolite-nulled spectra were acquired in three different brain regions with different ratios of grey and white matter from six healthy volunteers, at both 3 T and 7 T. Metabolite-nulled spectra were used to identify highly correlated macromolecular signal contributions and estimate the ratios of their intensities.
Introduction: The hippocampus is the most prominent single region of interest (ROI) for the diagnosis and prediction of Alzheimer's disease (AD). However, its suitability in the earliest stages of cognitive decline, i.e.
View Article and Find Full Text PDFObjectives: Non-contrast computed tomography (NCCT) markers are robust predictors of parenchymal hematoma expansion in intracerebral hemorrhage (ICH). We investigated whether NCCT features can also identify ICH patients at risk of intraventricular hemorrhage (IVH) growth.
Methods: Patients with acute spontaneous ICH admitted at four tertiary centers in Germany and Italy were retrospectively included from January 2017 to June 2020.
Background: White matter hyperintensities (WMH), a biomarker of small vessel disease, are often found in Alzheimer's disease (AD) and their advanced detection and quantification can be beneficial for research and clinical applications. To investigate WMH in large-scale multicenter studies on cognitive impairment and AD, appropriate automated WMH segmentation algorithms are required. This study aimed to compare the performance of segmentation tools and provide information on their application in multicenter research.
View Article and Find Full Text PDFBackground and Purpose: Fully automated methods for segmentation and volume quantification of intraparenchymal hemorrhage (ICH), intraventricular hemorrhage extension (IVH), and perihematomal edema (PHE) are gaining increasing interest. Yet, reliabilities demonstrate considerable variances amongst each other. Our aim was therefore to evaluate both the intra- and interrater reliability of ICH, IVH and PHE on ground-truth segmentation masks.
View Article and Find Full Text PDFIn the setting of acute ischemic stroke, increased blood-brain barrier permeability (BBBP) as a sign of injury is believed to be associated with increased risk of poor outcome. Pre-clinical studies show that selected serum biomarkers including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), matrix metallopeptidases (MMP), and vascular endothelial growth factors (VEGFs) may play a role in BBBP post-stroke. In the subacute phase of stroke, increased BBBP may also be caused by regenerative mechanisms such as vascular remodeling and therefore may improve functional recovery.
View Article and Find Full Text PDF