The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets.
View Article and Find Full Text PDFLeukocytes often undergo rapid changes in cell phenotype, for example, from a resting to an activated state, which places significant metabolic demands on the cell. These rapid changes in metabolic demand need to be tightly regulated to support immune cell effector functions during the initiation and downregulation of an immune response. Prospects for implementing cancer immunotherapy also rest on the idea of optimizing the metabolic profile of immune cell effectors.
View Article and Find Full Text PDFPest Manag Sci
March 2018
Background: Steinernema carpocapsae is a nematocomplex widely used as an alternative to chemicals for the biological control of insect pests; this nematode is symbiotically associated with the bacterium Xenorhabdus nematophila and both contribute to host death. The architecture and functions of structures and molecular components of the surface of nematodes and their symbiont bacteria are integral to early interactions with their hosts; thus, we assessed the role of protein pools isolated from the surface of S. carpocapsae and from phase I X.
View Article and Find Full Text PDFCachexia is a wasting syndrome that afflicts end-stage cancer patients. Whereas a consensus statement for a definition of cachexia recently has been accomplished, a useful measurement for this condition at present is lacking. The aim of the present review is to discuss the advantage of introducing the measurement of tumor burden for a better overall evaluation of cachexia.
View Article and Find Full Text PDFA new strategy of vaccination against mammary tumors, extendible to tumors of distinct histological origin, based on the administration of tumor cells genetically modified to express major histocompatibility complex (MHC) class II gene products, will be described. Expression of MHC class II molecules in solid tumors, generally lacking these molecules, is achieved by transfecting tumor cells with the MHC class II transactivator (CIITA), the major regulator of the entire family of MHC class II genes. CIITA is encoded by the AIR-1 locus, discovered in our laboratory.
View Article and Find Full Text PDFIn our study, we have investigated whether tumors of distinct histological origin can be rejected if expressing CIITA-driven MHC class II molecules. Moreover, we assessed whether antitumor lymphocytes generated by this approach could be used as an immunotherapeutic tool for established cancers. Stable CIITA-transfectants of C51colon adenocarcinoma, RENCA renal adenocarcinoma, WEHI-164 sarcoma as well as TS/A mammary adenocarcinoma were generated.
View Article and Find Full Text PDFIn the present study, we investigated the possibility to use irradiated, non-replicating class II transcriptional activator (CIITA)-transfected tumor TS/A cells as a cell-based vaccine. Eighty-three percent of TS/A-CIITA-vaccinated mice were completely protected from tumor growth and the remaining 17% displayed significant reduction of tumor growth. In contrast, only 30% of mice injected with irradiated TS/A parental cells were protected from tumor growth, whereas the remaining 70% of animals remained unprotected.
View Article and Find Full Text PDFThe human promyelocytic cell line THP-1 expresses high level of HLA class II (HLA-II) molecules after IFN-gamma treatment. Here, we report a variant of THP-1 that does not express HLA-II after IFN-gamma. The variant's HLA-II phenotype is constant over time in culture and it is not related to a defective IFN-gamma-signalling pathway.
View Article and Find Full Text PDFEndothelial-immune cell cross-talk goes well beyond leukocyte and lymphocyte trafficking, since immune cells are able to intimately regulate vessel formation and function. Here we review the evidence that most immune cells are capable of polarization towards a dichotomous activity either inducing or inhibiting angiogenesis. In addition to the well-known roles of tumor associated macrophages, we find that neutrophils, myeloid-derived suppressor and dendritic cells clearly have the potential for influencing tumor angiogenesis.
View Article and Find Full Text PDFWe have previously shown that TS/A murine mammary adenocarcinoma cells, induced to express high surface expression of MHC class II molecules by stable transfection of CIITA, resulted in high rate (92%) of tumor rejection and tumor immunity to subsequent homologous tumor challenges. The immunological basis of tumor response is based on tumor-specific CD4(+) T helper type 1 (Th1) in the priming phase and tumor-specific CD8(+) T cells as the major effector cells. IL-12 is the crucial cytokine that drives Th1 polarization in conjunction with inducing strong cellular-based immune responses.
View Article and Find Full Text PDFTreatment of tumor-bearing mice with mouse (m)TNF-alpha, targeted to tumor vasculature by the anti-ED-B fibronectin domain antibody L19(scFv) and combined with melphalan, induces a therapeutic immune response. Upon treatment, a highly efficient priming of CD4+ T cells and consequent activation and maturation of CD8+ CTL effectors is generated, as demonstrated by in vivo depletion and adoptive cell transfer experiments. Immunohistochemical analysis of the tumor tissue demonstrated massive infiltration of CD4+ and CD8+ T cells 6 days after treatment and much earlier in the anamnestic response to tumor challenge in cured mice.
View Article and Find Full Text PDFThe master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter.
View Article and Find Full Text PDFPurpose: We have shown previously that the MHC class II-negative murine TS/A adenocarcinoma is rejected in vivo if induced to express MHC class II molecules by transfection of the MHC class II transactivator CIITA. In this study, we explored the immunologic basis of tumor rejection and the correlation between histopathology of tumor tissue and immune rejection.
Experimental Design: Stable TS/A-CIITA transfectants were generated and injected into mice.
The human promyelocytic U937 cells express detectable levels of MHC class II (MHC-II) molecules. Treatment with 12-o--tetradecanoyl phorbol 13-acetate (TPA), inducing macrophage-like differentiation, produces a dramatic decrease of MHC-II expression as result of down-modulation of the activation of immune response gene 1 (AIR-1)-encoded MHC-II transactivator (CIITA). This event is specific, as MHC class I remains unaffected.
View Article and Find Full Text PDFThe human T-cell leukemia virus type 2 (HTLV-2), an oncogenic retrovirus closely related to HTLV-1, produces a lifelong infection whose possible association to certain human diseases is still debated. Although some viral products can influence the expression and action of cellular genes, very little is known about the molecular mechanisms involved. Here we show that the AIR-1-encoded human major histocompatibility complex (MHC) class II transactivator (CIITA) strongly inhibits viral replication, but not virus entry, in human B- and T-cell susceptible targets.
View Article and Find Full Text PDFResident macrophages are mainly responsible for the clearance of apoptotic cells from tissue by phagocytosis. Phagocytosis of apoptotic cells is not accompanied by activation of inflammatory mechanisms, unlike what happens when necrotic phenomena occur. We analyzed the effect of phagocytosis of apoptotic bodies on macrophage cell functions.
View Article and Find Full Text PDFThe expression of HLA class II genes is under the control of a transcriptional activator, CIITA, encoded by the AIR-1 locus. Here we show that CIITA inhibits HIV-1 LTR transactivation mediated by Tat. The inhibition occurred when CIITA and Tat were transiently expressed in cells after transfection and, most importantly, when tat cDNA was transfected in cells expressing CIITA in a constitutive fashion and at physiological levels.
View Article and Find Full Text PDFThe IFN-gamma-induced HLA class II expression in human macrophages was drastically reduced after phagocytosis of Escherichia coli. HLA class II down-modulation depended on phagocytosis of bacteria and could not be reproduced by phagocytosis of inert particles or by treatment with lipopolysaccharide. Study of the kinetics and molecular analysis showed that class II molecules and corresponding mRNA were up-regulated at 6 h after phagocytosis of bacteria.
View Article and Find Full Text PDF