Introduction: Krill oil is a dietary supplement derived from Antarctic krill; a small crustacean found in the ocean. Krill oil is a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, as well as the antioxidant astaxanthin. The aim of this study was to investigate the effects of krill oil supplementation, compared to placebo oil (high oleic sunflower oil added astaxanthin), on energy metabolism and substrate turnover in human skeletal muscle cells.
View Article and Find Full Text PDFBackground: Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood.
View Article and Find Full Text PDFStem cell-derived islets (SC-islets) are not only an unlimited source for cell-based therapy of type 1 diabetes but have also emerged as an attractive material for modeling diabetes and conducting screening for treatment options. Prior to SC-islets becoming the established standard for disease modeling and drug development, it is essential to understand their response to various nutrient sources . This study demonstrates an enhanced efficiency of pancreatic endocrine cell differentiation through the incorporation of WNT signaling inhibition following the definitive endoderm stage.
View Article and Find Full Text PDFAuthors have demonstrated that apoptosis activation is a pathway related to cartilage degradation characteristics of the OA process. Autophagy is an adaptive response to protect cells from various environmental changes, and defects in autophagy are linked to cell death. In this sense, decreased autophagy of chondrocytes has been observed in OA articular cartilage.
View Article and Find Full Text PDFBackground: Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented.
View Article and Find Full Text PDFThe interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter () , while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter were decreased.
View Article and Find Full Text PDFSkeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to might be limited.
View Article and Find Full Text PDFObesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m) and individuals with obesity (BMI>30 kg/m). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups.
View Article and Find Full Text PDFElectrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.
View Article and Find Full Text PDFBackground: Recent studies have highlighted that uncoupling of sarco-/endoplasmic reticulum Ca-ATPase (SERCA) by sarcolipin (SLN) increases ATP consumption and contributes to heat liberation. Exploiting this thermogenic mechanism in skeletal muscle may provide an attractive strategy to counteract obesity and associated metabolic disorders. In the present study, we have investigated the role of SLN on substrate metabolism in human skeletal muscle cells.
View Article and Find Full Text PDFThe association between obesity and osteoarthritis (OA) in joints not subjected to mechanical overload, together with the relationship between OA and metabolic syndrome, suggests that there are systemic factors related to metabolic disorders that are involved in the metabolic phenotype of OA. The aim of this work is study the effects of palmitate and oleate on cellular metabolism in an "" model of human chondrocytes. The TC28a2 chondrocyte cell line was used to analyze the effect of palmitate and oleate on mitochondrial and glycolytic function, Adenosine triphosphate (ATP) production and lipid droplets accumulation.
View Article and Find Full Text PDFWith the redefinition of osteoarthritis (OA) and the understanding that the joint behaves as an organ, OA is now considered a systemic illness with a low grade of chronic inflammation. Mitochondrial dysfunction is well documented in OA and has the capacity to alter chondrocyte and synoviocyte function. Transmitochondrial cybrids are suggested as a useful cellular model to study mitochondrial biology in vitro, as they carry different mitochondrial variants with the same nuclear background.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most frequent joint disease; however, the etiopathogenesis is still unclear. Chondrocytes rely primarily on glycolysis to meet cellular energy demand, but studies implicate impaired mitochondrial function in OA pathogenesis. The relationship between mitochondrial dysfunction and OA has been established.
View Article and Find Full Text PDFArthritis Rheumatol
July 2019
Objective: To analyze the influence of mitochondrial genome variation on the DNA methylome of articular cartilage.
Methods: DNA methylation profiling was performed using data deposited in the NCBI Gene Expression Omnibus database (accession no. GSE43269).
Introduction: The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr.
Methodology: Two immortalized hMSC lines (3a6 and KP) were used; 143B.