Transcriptional activity of connective tissue growth factor (CTGF) promoter in transfected HEK293 cells was determined by luciferase assays. Secreted CTGF in cultured human mesangial cells was measured by enzyme-linked immunosorbent assay (ELISA). CTGF in urine and plasma was also measured in 405 subjects with/without type 2 diabetes.
View Article and Find Full Text PDFThe expression of aldose reductase is tightly regulated by the transcription factor tonicity response element binding protein (TonEBP/NFAT5) binding to three osmotic response elements (OREs; OREA, OREB, and OREC) in the gene. The aim was to investigate the contribution of NFAT5 to the pathogenesis of diabetic nephropathy. Peripheral blood mononuclear cells (PBMCs) were isolated from the following subjects: 44 Caucasoid patients with type 1 diabetes, of whom 26 had nephropathy and 18 had no nephropathy after a diabetes duration of 20 years, and 13 normal healthy control subjects.
View Article and Find Full Text PDFCancer Genet Cytogenet
December 2005
Clear-cell renal cell carcinoma (CCRCC) is identified by abundant glycogen-rich cytoplasm, due to the aberrant influx and storage of glucose. The objective was to investigate the frequency of polymorphisms of the facilitative glucose transporter (GLUT1). GLUT1 is a downstream target of Hypoxia-inducible factor (HIF-1alpha), a mediator of hypoxia-controlled angiogenesis.
View Article and Find Full Text PDFObjective: Increased production of reactive oxygen species (ROS) in diabetes is thought to play a major role in the pathogenesis of diabetic microvascular complications such as nephropathy and retinopathy. The NAD(P)H oxidase complex is an important source of ROS in the vasculature. The p22 subunit is polymorphic with a C242T variant that changes histidine-72 for a tyrosine in the potential heme binding site, together with a A640G in the 3' untranslated region.
View Article and Find Full Text PDFIncreased flux of glucose through the polyol pathway may cause generation of excess reactive oxygen species (ROS), leading to tissue damage. Abnormalities in expression of enzymes that protect against oxidant damage may accentuate the oxidative injury. The expression of catalase (CAT), CuZn superoxide-dismutase (CuZnSOD), glutathione peroxidase (GPX), and Mn superoxide-dismutase (MnSOD) mRNA was quantified in peripheral blood mononuclear cells-obtained from 26 patients with type 1 diabetes and nephropathy, 15 with no microvascular complications after 20 years' duration of diabetes, and 10 normal healthy control subjects-that were exposed in vitro to hyperglycemia (HG) (31 mmol/l D-glucose).
View Article and Find Full Text PDF