Publications by authors named "Andrea D'Aniello"

Particular attention is paid to the risk of carbon dioxide (CO ) leakage in geologic carbon sequestration (GCS) operations, as it might lead to the failure of sequestration efforts and to the contamination of underground sources of drinking water. As carbon dioxide would eventually reach shallower formations under its gaseous state, understanding its multiphase flow behavior is essential. To this aim, a hypothetical gaseous leak of carbon dioxide resulting from a well integrity failure of the GCS system in operation at Hellisheiði (CarbFix2) is here modeled.

View Article and Find Full Text PDF

The potential environmental impacts on subsurface water resources induced by unconventional gas production are still under debate. Solving the controversy regarding the potential adverse effects of gas leakages on groundwater resources is therefore crucial. In this work, an interesting real-world case is presented in order to give further insight into methane multiphase and transport behavior in the shallow subsurface, often disregarded compared to the behavior in the deep subsurface.

View Article and Find Full Text PDF

Industrial use has led to the presence of liquid elemental mercury (Hg) worldwide in the subsurface as Dense NonAqueous Phase Liquid (DNAPL), resulting in long lasting sources of contamination, which cause harmful effects on human health and detrimental consequences on ecosystems. However, to date, insight into the infiltration behaviour of elemental mercury DNAPL is lacking. In this study, a two-stage flow container experiment of elemental mercury DNAPL infiltration into a variably water saturated stratified sand is described.

View Article and Find Full Text PDF

Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites.

View Article and Find Full Text PDF