Bell's theorem, a landmark result in the foundations of physics, establishes that quantum mechanics is a non-local theory. It asserts, in particular, that two spatially separated, but entangled, quantum systems can be correlated in a way that cannot be mimicked by classical systems. A direct operational consequence of Bell's theorem is the existence of statistical tests which can detect the presence of entanglement.
View Article and Find Full Text PDFQuantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems.
View Article and Find Full Text PDF