Protein interaction modules coordinate the connections within and the activity of intracellular signaling networks. The Eps15 Homology (EH) module, a protein-protein interaction domain that is a key feature of the EH-network, was originally identified in a few proteins involved in endocytosis and vesicle trafficking, and has subsequently also been implicated in actin reorganization, nuclear shuttling, and DNA repair. Here we report an extensive characterization of the physical connections and of the functional wirings of the EH-network in the nematode.
View Article and Find Full Text PDFTranscription hinders replication fork progression and stability. The ATR checkpoint and specialized DNA helicases assist DNA synthesis across transcription units to protect genome integrity. Combining genomic and genetic approaches together with the analysis of replication intermediates, we searched for factors coordinating replication with transcription.
View Article and Find Full Text PDFTopoisomerase I (Top1) releases torsional stress during DNA replication and transcription and is inhibited by camptothecin and camptothecin-derived cancer chemotherapeutics. Top1 inhibitor cytotoxicity is frequently linked to double-strand break (DSB) formation as a result of Top1 being trapped on a nicked DNA intermediate in replicating cells. Here we use yeast, mammalian cell lines and Xenopus laevis egg extracts to show that Top1 poisons rapidly induce replication-fork slowing and reversal, which can be uncoupled from DSB formation at sublethal inhibitor doses.
View Article and Find Full Text PDFTranscription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1.
View Article and Find Full Text PDFIntercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells.
View Article and Find Full Text PDFChromosome replication initiates at multiple replicons and terminates when forks converge. In E. coli, the Tus-TER complex mediates polar fork converging at the terminator region, and aberrant termination events challenge chromosome integrity and segregation.
View Article and Find Full Text PDFRecombination signal sequences (RSSs) flanking V, D and J gene segments are recognized and cut by the VDJ recombinase during development of B and T lymphocytes. All RSSs are composed of seven conserved nucleotides, followed by a spacer (containing either 12 +/- 1 or 23 +/- 1 poorly conserved nucleotides) and a conserved nonamer. Errors in V(D)J recombination, including cleavage of cryptic RSS outside the immunoglobulin and T cell receptor loci, are associated with oncogenic translocations observed in some lymphoid malignancies.
View Article and Find Full Text PDFSpecialized topoisomerases solve the topological constraints arising when replication forks encounter transcription. We have investigated the contribution of Top2 in S phase transcription. Specifically in S phase, Top2 binds intergenic regions close to transcribed genes.
View Article and Find Full Text PDFThe E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target genes of E2F, leading to the identification of several hundred such genes that are involved not only in DNA replication and cell cycle progression, but also in DNA damage repair, apoptosis, differentiation and development. These new findings greatly enrich our understanding of how E2F controls transcription and cellular homeostasis.
View Article and Find Full Text PDFThe transcription factor Myc is induced by mitogenic signals and regulates downstream cellular responses. If overexpressed, Myc promotes malignant transformation. Myc modulates expression of diverse genes in experimental systems, but few are proven direct targets.
View Article and Find Full Text PDF