Publications by authors named "Andrea Clematis"

There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems.

View Article and Find Full Text PDF

The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased.

View Article and Find Full Text PDF

Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality.

View Article and Find Full Text PDF

Emerging technologies for structure matching based on surface descriptions have demonstrated their effectiveness in many research fields. In particular, they can be successfully applied to in silico studies of structural biology. Protein activities, in fact, are related to the external characteristics of these macromolecules and the ability to match surfaces can be important to infer information about their possible functions and interactions.

View Article and Find Full Text PDF

In this paper we propose a parallel system for protein surface reconstruction based on techniques of computational geometry. The advantage of our modelling system is the production of both superficial and volumetric description of proteins. This is very important in protein analysis from the functional point of view, because many binding sites are buried inside the macromolecule.

View Article and Find Full Text PDF

The Tissue MicroArray (TMA) technique is assuming even more importance. Digital images acquisition becomes fundamental to provide an automatic system for subsequent analysis. The accuracy of the results depends on the image resolution, which has to be very high in order to provide as many details as possible.

View Article and Find Full Text PDF

Background: This study concerns the development of a high performance workflow that, using grid technology, correlates different kinds of Bioinformatics data, starting from the base pairs of the nucleotide sequence to the exposed residues of the protein surface. The implementation of this workflow is based on the Italian Grid.it project infrastructure, that is a network of several computational resources and storage facilities distributed at different grid sites.

View Article and Find Full Text PDF