Publications by authors named "Andrea Clark-Sevilla"

Preeclampsia is one of the leading causes of maternal morbidity, with consequences during and after pregnancy. Because of its diverse clinical presentation, preeclampsia is an adverse pregnancy outcome that is uniquely challenging to predict and manage. In this paper, we developed racial bias-free machine learning models that predict the onset of preeclampsia with severe features or eclampsia at discrete time points in a nulliparous pregnant study cohort.

View Article and Find Full Text PDF

Objective: Preterm birth (PTB) is a major determinant of neonatal mortality, morbidity, and childhood disability. In this article, we present a longitudinal analysis of the risk factors associated with PTB and how they have varied over the years: starting from 1968 when the CDC first started, reporting the natality data, up until 2021. Along with this article, we are also releasing an RShiny web application that will allow for easy consumption of this voluminous dataset by the research community.

View Article and Find Full Text PDF

Objective: Preeclampsia is one of the leading causes of maternal morbidity, with consequences during and after pregnancy. Because of its diverse clinical presentation, preeclampsia is an adverse pregnancy outcome that is uniquely challenging to predict and manage. In this paper, we developed machine learning models that predict the onset of preeclampsia with severe features or eclampsia at discrete time points in a nulliparous pregnant study cohort.

View Article and Find Full Text PDF