Publications by authors named "Andrea Cioncolini"

Electromagnetic actuation can support many fields of technology, such as robotics or biomedical applications. In this context, fully understanding the system behavior and proposing a low-cost package for feedback control is challenging. Modeling the electromagnetic force is particularly tricky because it is a nonlinear function of the actuated object's position and coil's current.

View Article and Find Full Text PDF

Wind-energy-harvesting generators based on inverted flag architecture are an attractive option to replace batteries in low-power wireless electronic devices and deploy-and-forget distributed sensors. This study examines two important aspects that have been overlooked in previous research: the interaction between an inverted flag and a neighboring solid boundary and the interaction among multiple contiguous inverted flags arranged in a vertical row. Systematic tests have been carried out with metal-only 'baseline' flags as well as a 'harvester' variant, i.

View Article and Find Full Text PDF

In this study, we numerically investigated the effect of swirl inserts with and without nanofluids over a range of Reynolds numbers for parabolic trough collectors with non-uniform heating. Three approaches were utilized to enhance the thermal-hydraulic performance-the variation of geometrical properties of a single canonical insert to find the optimized shape; the use of nanofluids and analysis of the effect of both the aforementioned approaches; the use of swirl generators and nanofluids together. Results revealed that using the straight conical strips alone enhanced the Nusselt number by 47.

View Article and Find Full Text PDF

Microfluidics is an active research area in modern fluid mechanics, with several applications in science and engineering. Despite their importance in microfluidic systems, micro-orifices with non-circular cross-sections have not been extensively investigated. In this study, micro-orifice discharge with single-phase liquid flow was experimentally investigated for seven square and rectangular cross-section micro-orifices with a hydraulic diameter in the range of 326-510 µm.

View Article and Find Full Text PDF