Publications by authors named "Andrea Chiba"

Interactive neurorobotics is a subfield which characterizes brain responses evoked during interaction with a robot, and their relationship with the behavioral responses. Gathering rich neural and behavioral data from humans or animals responding to agents can act as a scaffold for the design process of future social robots. This research seeks to study how organisms respond to artificial agents in contrast to biological or inanimate ones.

View Article and Find Full Text PDF

Natural systems exhibit diverse behavior generated by complex interactions between their constituent parts. To characterize these interactions, we introduce Convergent Cross Sorting (CCS), a novel algorithm based on convergent cross mapping (CCM) for estimating dynamic coupling from time series data. CCS extends CCM by using the relative ranking of distances within state-space reconstructions to improve the prior methods' performance at identifying the existence, relative strength, and directionality of coupling across a wide range of signal and noise characteristics.

View Article and Find Full Text PDF

Male and female Long-Evans rats were tested in the Morris water maze at 6 months of age. A place training procedure, in which rats learned the position of a camouflaged platform, was followed by cue training, in which rats escaped to a visible platform. No sex difference was found in place learning ability.

View Article and Find Full Text PDF

Commensurate with constant technological advances, social robots are increasingly anticipated to enter homes and classrooms; however, little is known about the efficacy of social robots as teaching tools. To investigate children's learning from robots, 1- to 3-year-olds observed either a human or a robot demonstrate two goal-directed object manipulation tasks and were then given the opportunity to act on the objects. Children exhibited less imitation from robotic models that varied with task complexity and age, a phenomenon we term the "robot deficit.

View Article and Find Full Text PDF

The ability to integrate our perceptions across sensory modalities and across time, to execute and coordinate movements, and to adapt to a changing environment rests on temporal processing. Timing is essential for basic daily tasks, such as walking, social interaction, speech and language comprehension, and attention. Impaired temporal processing may contribute to various disorders, from attention-deficit hyperactivity disorder and schizophrenia to Parkinson's disease and dementia.

View Article and Find Full Text PDF

In this article, we explore neurobiological principles that could be deployed in systems requiring self-preservation, adaptive control, and contextual awareness. We start with low-level control for sensor processing and motor reflexes. We then discuss how critical it is at an intermediate level to maintain homeostasis and predict system set points.

View Article and Find Full Text PDF

Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits.

View Article and Find Full Text PDF

Complex behaviors demand temporal coordination among functionally distinct brain regions. The basal forebrain's afferent and efferent structure suggests a capacity for mediating this coordination at a large scale. During performance of a spatial orientation task, synaptic activity in this region was dominated by four amplitude-independent oscillations temporally organized by the phase of the slowest, a theta-frequency rhythm.

View Article and Find Full Text PDF

A primary function of the brain is to form representations of the sensory world. Its capacity to do so depends on the relationship between signal correlations, associated with neuronal receptive fields, and noise correlations, associated with neuronal response variability. It was recently shown that the behavioral relevance of sensory stimuli can modify the relationship between signal and noise correlations, presumably increasing the encoding capacity of the brain.

View Article and Find Full Text PDF

The hippocampus is an important structure for learning and memory processes, and has strong rhythmic activity. Although a large amount of research has been dedicated toward understanding the rhythmic activity in the hippocampus during exploratory behaviors, specifically in the theta (5-10 Hz) frequency range, few studies have examined the temporal interplay of theta and other frequencies during the presentation of meaningful cues. We obtained in vivo electrophysiological recordings of local field potentials (LFP) in the dentate gyrus (DG) of the hippocampus as rats performed three different associative learning tasks.

View Article and Find Full Text PDF

The basal forebrain comprises several heterogeneous neuronal subgroupings having modular projection patterns to discrete sets of cortical subregions. Each cortical region forms recurrent projections, via prefrontal cortex, that reach the specific basal forebrain subgroups from which they receive afferents. This architecture enables the basal forebrain to selectively modulate cortical responsiveness according to current processing demands.

View Article and Find Full Text PDF

Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time.

View Article and Find Full Text PDF

Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied.

View Article and Find Full Text PDF

Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD).

View Article and Find Full Text PDF

While it has been hypothesized that adult neurogenesis (NG) plays a role in the encoding of temporal information at long time-scales, the temporal relationship of immature cells to the highly rhythmic network activity of the hippocampus has been largely unexplored. Here, we present a theory for how the activity of immature adult-born granule cells relates to hippocampal oscillations. Our hypothesis is that theta rhythmic (5-10 Hz) excitatory and inhibitory inputs into the hippocampus could differentially affect young and mature granule cells due to differences in intrinsic physiology and synaptic inhibition between the two cell populations.

View Article and Find Full Text PDF

Attention is a complex neurobiological process that involves rapidly and flexibly balancing sensory input and goal-directed predictions in response to environmental changes. The cholinergic and noradrenergic systems, which have been proposed to respond to expected and unexpected environmental uncertainty, respectively, play an important role in attention by differentially modulating activity in a multitude of cortical targets. Here we develop a model of an attention task that involves expected and unexpected uncertainty.

View Article and Find Full Text PDF

A current theory of attention posits that several micro-indices of attentional vigilance are dependent on activation of the locus coeruleus, a brainstem nucleus that regulates cortical norepinephrine activity (Aston-Jones et al., 1999). This theory may account for many findings in the infant literature, while highlighting important new areas for research and theory on infant attention.

View Article and Find Full Text PDF

Cholinergic, GABAergic and glutamatergic projection neurons of the basal forebrain (BF) innervate widespread regions of the neocortex and are thought to modulate learning and attentional processes. Although it is known that neuronal cell types in the BF exhibit oscillatory firing patterns, whether the BF as a whole shows oscillatory field potential activity, and whether such neuronal patterns relate to components of cognitive tasks, has yet to be determined. To this end, local field potentials (LFPs) were recorded from the BF of rats performing an associative learning task wherein neutral objects were paired with differently valued reinforcers (pellets).

View Article and Find Full Text PDF

Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer's disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer's disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory.

View Article and Find Full Text PDF

Study Objectives: To develop a rodent model of the attentional dysfunction caused by sleep loss.

Design: The attentional performance of rats was assessed after 4, 7, and 10 hours of total sleep deprivation on a 5-choice serial reaction time task, in which rats detect and respond to brief visual stimuli.

Setting: The rats were housed, sleep deprived, and behaviorally tested in a controlled laboratory setting.

View Article and Find Full Text PDF

A reorganization of cortical representations is postulated as the basis for functional recovery following many types of nervous system injury. Neuronal mechanisms underlying this form of cortical plasticity are poorly understood. The present study investigated the hypothesis that the basal forebrain cholinergic system plays an essential role in enabling the cortical reorganization required for functional recovery following brain injury.

View Article and Find Full Text PDF

The contribution of the basal forebrain cholinergic system in mediating plasticity of cortical sensorimotor representations was examined in the context of normal learning. The effects of specific basal forebrain cholinergic lesions upon cortical reorganization associated with learning a skilled motor task were investigated, addressing, for the first time, the functional consequences of blocking cortical map plasticity. Results demonstrate that disrupting basal forebrain cholinergic function disrupts cortical map reorganization and impairs motor learning.

View Article and Find Full Text PDF

Aging in rodents is known to lead to deficits in spatial learning and memory, including decreased performance on the Morris water maze. Recent attention has focused on the possible role of adult hippocampal neurogenesis in regulating spatial learning and memory. Therefore, in this study, we have examined levels of hippocampal cell proliferation in relation to water maze performance in aged and young male Fischer 344 rats.

View Article and Find Full Text PDF

Two variants of a continuous recognition training procedure were designed in order to query 2 forms of spatial memory. A continuous reinforcement condition (reflecting perceptual memory) and a differential reinforcement condition (reflecting episodic-like memory) were used to test rats on a 12-arm radial maze. After total hippocampal lesions, rats demonstrated intact performance on the continuous reinforcement condition, but impaired performance on the differential reinforcement condition.

View Article and Find Full Text PDF