In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species.
View Article and Find Full Text PDFReduced insect pest populations found on long-term organic farms have mostly been attributed to increased biodiversity and abundance of beneficial predators, as well as to changes in plant nutrient content. However, the role of plant resistance has largely been ignored. Here, we determine whether host plant resistance mediates decreased pest populations in organic systems and identify potential underpinning mechanisms.
View Article and Find Full Text PDFA promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P.
View Article and Find Full Text PDFObjective: Patients with advanced low-grade serous carcinoma (LGSC) have poor long-term survival rates. As a rare histotype, there are uncertainties regarding the use of current therapies. Thus, we studied practice patterns and treatment outcomes as part of a national initiative to better understand and improve the care of women with advanced LGSC.
View Article and Find Full Text PDFTo discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis.
View Article and Find Full Text PDFGiven that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially effective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structurally distinct antifungals that inhibit yeast ScPma1p.
View Article and Find Full Text PDFCochrane Database Syst Rev
March 2017
Background: Dental plaque associated gingivitis is a reversible inflammatory condition caused by accumulation and persistence of microbial biofilms (dental plaque) on the teeth. It is characterised by redness and swelling of the gingivae (gums) and a tendency for the gingivae to bleed easily. In susceptible individuals, gingivitis may lead to periodontitis and loss of the soft tissue and bony support for the tooth.
View Article and Find Full Text PDFVector-borne pathogens influence host characteristics relevant to host-vector contact, increasing pathogen transmission and survival. Previously, we demonstrated that infection with Turnip mosaic virus, a member of one of the largest families of plant-infecting viruses, increases vector attraction and reproduction on infected hosts. These changes were due to a single viral protein, NIa-Pro.
View Article and Find Full Text PDFThe last decade of research has made significant strides toward practical applications of Microbial Fuel Cells (MFCs); however, design improvements and operational optimization cannot be realized without equally considering engineering designs and biological interfacial reactions. In this study, the main factors contributing to MFCs' overall performance and their influence on MFC reproducibility are discussed. Two statistical approaches were used to create a map of MFC components and their expanded uncertainties, principal component analysis (PCA) and uncertainty of measurement results (UMR).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2013
The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them.
View Article and Find Full Text PDFWe report the development of microbial populations and changes in their electrochemical production during a 2-month study of a two-chamber microbial fuel cell (MFC). The original inoculum was taken from anaerobic enrichment cultures with soil as the inoculum, and lactate as the exogenous electron donor. Power density (PD), coulombic production (CP), and coulombic efficiency (CE) increased rapidly, reaching high values (320 mW m(-3), 65 Q, and 12.
View Article and Find Full Text PDFChitosan (CHIT) scaffolds doped with multi-walled carbon nanotubes (CNT) were fabricated and evaluated for their utility as a microbial fuel cell (MFC) anodic material. High resolution microscopy verified the ability of Shewanella oneidensis MR-1 to directly colonize CHIT-CNT scaffolds. Cross-linking agents 1-ethyl-3-[3-dimethylaminopropyl] carbodimide hydrochloride (EDC), glutaraldehyde and glyoxal were independently studied for their ability to strengthen the CHIT-CNT matrix without disrupting the final pore structure.
View Article and Find Full Text PDFElectricity production by bacterial communities enriched from wastewater sludge with lactate, succinate, N-acetyl-D-glucosamine (NAG), acetate, formate, and uridine were monitored in dual-chamber microbial fuel cells (MFCs). Stable electricity production was observed after 300 h for communities enriched from lactate, acetate, and formate, while communities enriched with succinate, NAG, and uridine stabilized only after 700 h. The average peak current densities and maximum power densities generated from bacterial consortia were significantly higher than those generated from pure cultures of Shewanella oneidensis MR-1.
View Article and Find Full Text PDF