The concept of robustness has been widely used in water resources management to identify solutions that perform satisfactorily across a range of plausible future conditions to increase confidence in decision-making in a deeply uncertain future. However, the selection of an appropriate metric to quantify robustness remains challenging due to the existence of multiple choices reflecting different risk preferences. In addition, different scenarios can be used to represent plausible future conditions, which adds another layer of complexity to solution identification.
View Article and Find Full Text PDFAcross continental Africa, more than 300 new hydropower projects are under consideration to meet the future energy demand that is expected based on the growing population and increasing energy access. Yet large uncertainties associated with hydroclimatic and socioeconomic changes challenge hydropower planning. In this work, we show that only 40 to 68% of the candidate hydropower capacity in Africa is economically attractive.
View Article and Find Full Text PDFIn state-of-the-art energy systems modelling, reservoir hydropower is represented as any other thermal power plant: energy production is constrained by the plant's installed capacity and a capacity factor calibrated on the energy produced in previous years. Natural water resource variability across different temporal scales and the subsequent filtering effect of water storage mass balances are not accounted for, leading to biased optimal power dispatch strategies. In this work, we aim at introducing a novelty in the field by advancing the representation of reservoir hydropower generation in energy systems modelling by explicitly including the most relevant hydrological constraints, such as time-dependent water availability, hydraulic head, evaporation losses, and cascade releases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
The climate resilience of river deltas is threatened by rising sea levels, accelerated land subsidence, and reduced sediment supply from contributing river basins. Yet, these uncertain and rapidly changing threats are rarely considered in conjunction. Here we provide an integrated assessment, on basin and delta scales, to identify key planning levers for increasing the climate resilience of the Mekong Delta.
View Article and Find Full Text PDFBenefit-cost analyses of climate policies by integrated assessment models have generated conflicting assessments. Two critical issues affecting social welfare are regional heterogeneity and inequality. These have only partly been accounted for in existing frameworks.
View Article and Find Full Text PDFDecades of sustainable dam planning efforts have focused on containing dam impacts in regime conditions, when the dam is fully filled and operational, overlooking potential disputes raised by the filling phase. Here, we argue that filling timing and operations can catalyze most of the conflicts associated with a dam's lifetime, which can be mitigated by adaptive solutions that respond to medium-to-long term hydroclimatic fluctuations. Our retrospective analysis of the contested recent filling of Gibe III in the Omo-Turkana basin provides quantitative evidence of the benefits generated by adaptive filling strategies, attaining levels of hydropower production comparable with the historical ones while curtailing the negative impacts to downstream users.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2022
Direct policy search (DPS) is emerging as one of the most effective and widely applied reinforcement learning (RL) methods to design optimal control policies for multiobjective Markov decision processes (MOMDPs). Traditionally, DPS defines the control policy within a preselected functional class and searches its optimal parameterization with respect to a given set of objectives. The functional class should be tailored to the problem at hand and its selection is crucial, as it determines the search space within which solutions can be found.
View Article and Find Full Text PDFRivers support some of Earth's richest biodiversity and provide essential ecosystem services to society, but they are often fragmented by barriers to free flow. In Europe, attempts to quantify river connectivity have been hampered by the absence of a harmonized barrier database. Here we show that there are at least 1.
View Article and Find Full Text PDFDrought risk refers to the potential losses from hazard imposed by a drought event, and it is generally characterized as a function of vulnerability, hazard, and exposure. In this study, drought risk is assessed at a national level across Africa, and the impacts of climate change, population growth, and socioeconomic vulnerabilities on drought risk are investigated. A rigorous framework is implemented to quantify drought vulnerability considering various sectors including economy, energy and infrastructure, health, land use, society, and water resources.
View Article and Find Full Text PDFTwo decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains.
View Article and Find Full Text PDF