Publications by authors named "Andrea Cardona-Rossinyol"

Motoneuron (MN) cell death is the histopathologic hallmark of spinal muscular atrophy (SMA), although MN loss seems to be a late event. Conversely, disruption of afferent synapses on MNs has been shown to occur early in SMA. Using a mouse model of severe SMA (SMNΔ7), we examined the mechanisms involved in impairment of central synapses.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by motoneuron death. Clinical and experimental studies in animal models of ALS have found gender differences in the incidence and onset of disease, suggesting that female hormones may play a beneficial role. Cumulative evidence indicates that 17β-estradiol (17βE2) has a neuroprotective role in the central nervous system.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease that affects alpha motoneurons in the spinal cord caused by homozygous deletion or specific mutations in the survival motoneuron-1 (SMN1) gene. Cell migration is critical at many stages of nervous system development; to investigate the role of SMN in cell migration, U87MG astroglioma cells were transduced with shSMN lentivectors and about 60% reduction in SMN expression was achieved. In a monolayer wound-healing assay, U87MG SMN-depleted cells exhibit reduced cell migration.

View Article and Find Full Text PDF