Publications by authors named "Andrea Calvo-Echenique"

This paper proposes a new damage index named (DoH) to efficiently tackle structural damage monitoring in real-time. As a key contribution, the proposed index relies on a pattern matching methodology that measures the time-of-flight mismatch of sequential ultrasonic guided-wave measurements using fuzzy logic fundamentals. The ultrasonic signals are generated using the transmission beamforming technique with a phased-array of piezoelectric transducers.

View Article and Find Full Text PDF

Background: Segment fusion using interbody cages supplemented with pedicle screw fixation is the most common surgery for the treatment of low back pain. However, there is still much controversy regarding the use of cages in a stand-alone fashion. The goal of this work is to numerically compare the influence that each surgery has on lumbar biomechanics.

View Article and Find Full Text PDF

Nucleotomy is the gold standard treatment for disc herniation and has proven ability to restore stability by creating a bony bridge without any additional fixation. However, the evolution of mineral density in the extant and new bone after nucleotomy and fixation techniques has to date not been investigated in detail. The main goal of this study is to determine possible mechanisms that may trigger the bone remodelling and formation processes.

View Article and Find Full Text PDF

Background And Objective: Spinal degeneration and instability are commonly treated with interbody fusion cages either alone or supplemented with posterior instrumentation with the aim to immobilise the segment and restore intervertebral height. The purpose of this work is to establish a tool which may help to understand the effects of intervertebral cage design and placement on the biomechanical response of a patient-specific model to help reducing post-surgical complications such as subsidence and segment instability.

Methods: A 3D lumbar functional spinal unit (FSU) finite element model was created and a parametric model of an interbody cage was designed and introduced in the FSU.

View Article and Find Full Text PDF

Animal models have been extensively used for the study of degenerative diseases and evaluation of new therapies to stop or even reverse the disease progression. The aim of this study is to reproduce lumbar intervertebral disc degeneration in a rabbit model by performing a percutaneous annular puncture at L4L5 level. The effect of this damage on the spine behaviour was analysed combining three different techniques: imaging processing, mechanical testing and computational modelling.

View Article and Find Full Text PDF

The most conventional technique to treat the intervertebral disc degeneration consists on fusing the affected segment with a posterior screw fixation and sometimes with the insertion of a cage in the intersomatic space. However, this kind of surgeries had controversial results in the adjacent discs. The aim of this work was to prove the stabilization of the spine and the decompression of the disc and to analyze the influence over the adjacent segments.

View Article and Find Full Text PDF