Appl Environ Microbiol
November 2010
Engineered nanoparticles are increasingly incorporated into consumer products and are emerging as potential environmental contaminants. Upon environmental release, nanoparticles could inhibit bacterial processes, as evidenced by laboratory studies. Less is known regarding bacterial alteration of nanoparticles, including whether bacteria affect physical agglomeration states controlling nanoparticle settling and bioavailability.
View Article and Find Full Text PDFTurnover of phospholipids in the yeast Saccharomyces cerevisiae generates intracellular glycerophosphocholine (GPC). Here we show that GPC can be reacylated in an acyl-CoA-dependent reaction by yeast microsomal membranes. The lysophosphatidylcholine that is formed in this reaction is efficiently further acylated to phosphatidylcholine (PC) by yeast microsomes, thus providing a new pathway for PC biosynthesis that can either recycle endogenously generated GPC or utilize externally provided GPC.
View Article and Find Full Text PDFLong-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated.
View Article and Find Full Text PDF