In this published article, Fig. 5 contained a mistake-graphs on the right.
View Article and Find Full Text PDFBackground: Several studies strongly support the role of the dopamine D-like and glutamate mGlu receptors in psychostimulant reward and relapse.
Methods: The present study employed cocaine or MDMA self-administration with yoked-triad procedure in rats to explore whether extinction training affects the drug-seeking behavior and the D-like and mGlu receptor B and K values in several regions of the animal brain.
Results: Both cocaine and MDMA rats developed maintenance of self-administration, but MDMA evoked lower response rates and speed of self-administration acquisition.
The reinforcing effects of Δ-tetrahydrocannabinol (THC) in rats and monkeys, and the reinforcement-related dopamine-releasing effects of THC in rats, can be attenuated by increasing endogenous levels of kynurenic acid (KYNA) through systemic administration of the kynurenine 3-monooxygenase inhibitor, Ro 61-8048. KYNA is a negative allosteric modulator of α7 nicotinic acetylcholine receptors (α7nAChRs) and is synthesized and released by astroglia, which express functional α7nAChRs and cannabinoid CB1 receptors (CB1Rs). Here, we tested whether these presumed KYNA autoreceptors (α7nAChRs) and CB1Rs regulate glutamate release.
View Article and Find Full Text PDFThe present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of functional assays. These assays include the measure of several down-stream signaling [intracellular Ca levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands.
View Article and Find Full Text PDFBackground: Based on the pivotal role of astrocytes in brain homeostasis and the strong metabolic cooperation existing between neurons and astrocytes, it has been suggested that astrocytic dysfunctions might cause and/or contribute to neuroinflammation and neurodegenerative processes. Therapeutic approaches aimed at both neuroprotection and neuroinflammation reduction may prove particularly effective in slowing the progression of these diseases. The endogenous lipid mediator palmitoylethanolamide (PEA) displayed neuroprotective and anti(neuro)inflammatory properties, and demonstrated interesting potential as a novel treatment for Alzheimer's disease.
View Article and Find Full Text PDFThe effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D-σ heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ receptors (σRs) in the cocaine-provoked amplification of D receptor (DR)-induced reduction of K-evoked [H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D-likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K-evoked [H]-DA and glutamate release from rat striatal synaptosomes.
View Article and Find Full Text PDFThe long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored.
View Article and Find Full Text PDFIn this study, the functional role of individual striatal receptors for adenosine (A2AR), dopamine (D2R), and the metabotropic glutamate receptor mGlu5R in regulating rat basal ganglia activity was characterized in vivo using dual-probe microdialysis in freely moving rats. In particular, intrastriatal perfusion with the D2R agonist quinpirole (10 μM, 60 min) decreased ipsilateral pallidal GABA and glutamate levels, whereas intrastriatal CGS21680 (A2AR agonist; 1 μM, 60 min) was ineffective on either pallidal GABA and glutamate levels or the quinpirole-induced effects. Intrastriatal perfusion with the mGlu5R agonist (RS)-2-chloro-5-hydroxyphenylglycine (600 μM, 60 min), by itself ineffective on pallidal GABA and glutamate levels, partially counteracted the effects of quinpirole.
View Article and Find Full Text PDFNeurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents.
View Article and Find Full Text PDFAims: N-[(4-trifluoromethyl) benzyl] 4-methoxybutyramide (GET73) may be considered a promising therapeutic agent for the treatment of alcohol use disorders. The compound displayed anti-alcohol and anxiolytic properties in rat. In the present study, an in vitro experimental model of chronic ethanol treatment was used to investigate the ability of the compound to counteract the ethanol-induced neurotoxicity.
View Article and Find Full Text PDFBackground: Considering the heterogeneity of pathological changes occurring in Alzheimer's disease (AD), a therapeutic approach aimed both to neuroprotection and to neuroinflammation reduction may prove effective. Palmitoylethanolamide (PEA) has attracted attention for its anti-inflammatory/neuroprotective properties observed in AD animal models.
Objective And Methods: We evaluated the protective role of PEA against amyloid-β₄₂ (Aβ₄₂) toxicity on cell viability and glutamatergic transmission in primary cultures of cerebral cortex neurons and astrocytes from the triple-transgenic murine model of AD (3xTg-AD) and their wild-type littermates (non-Tg) mice.
Striatal dopamine adenosine A2A and D2 receptors interact to modulate some aspects of motor and motivational function. The demonstration of A2A/D2 receptor heteromerization in living cells constituted a progress for understanding the neurobiology of dopamine D2 and adenosine A2A receptors. In fact, the existence of putative striatalA2A/D2 receptor heteromers has been suggested to be important for striatal function under both normal and pathological conditions, such as Parkinson's disease.
View Article and Find Full Text PDFThe tridecapeptide neurotensin (NT) acts as neurotransmitter in the central nervous system and in the periphery. NT and NT receptors are largely localized in dopamine (DA)-enriched regions of the mammalian brain. Accordingly, numerous studies indicate the presence of close functional interactions between DA neurons and the peptide.
View Article and Find Full Text PDF