Publications by authors named "Andrea Busch"

Wastewater surveillance is an effective way to track the prevalence of infectious agents within a community and, potentially, the spread of pathogens between jurisdictions. We conducted a retrospective wastewater surveillance study of the 2022-23 influenza season in 2 communities, Detroit, Michigan, USA, and Windsor-Essex, Ontario, Canada, that form North America's largest cross-border conurbation. We observed a positive relationship between influenza-related hospitalizations and the influenza A virus (IAV) wastewater signal in Windsor-Essex (ρ = 0.

View Article and Find Full Text PDF

While online monitoring of physicochemical parameters has widely been incorporated into drinking water treatment systems, online microbial monitoring has lagged behind, resulting in the use of surrogate parameters (disinfectant residual, applied dose, concentration × time, CT) to assess disinfection system performance. Online flow cytometry (online FCM) allows for automated quantification of total and intact microbial cells. This study sought to investigate the feasibility of online FCM for full-scale drinking water ozone disinfection system performance monitoring.

View Article and Find Full Text PDF

In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies.

View Article and Find Full Text PDF

Previous research has demonstrated that biological phosphorus removal (bio-P) occurs in the Great Lakes Water Authority (GLWA) water resource recovery facility (WRRF) high purity oxygen activated sludge (HPO-AS) process, suggesting that sludge fermentation in the secondary clarifier sludge blanket is key to bio-P occurrence. This study, combining batch reactor testing, the development of a process model for the HPO-AS process using Sumo21 (Dynamita), and the analysis of eight and a half years of plant operating data, showed that bio-P consistently occurs at the GLWA WRRF. This occurrence is attributed to the unique configuration of the HPO-AS process, which has a relatively large secondary clarifier compared to the bioreactor, and the characteristics of the influent wastewater, primarily particulate matter with limited concentrations of dissolved biodegradable organic matter.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) is useful in predicting temporal fluctuations of COVID-19 incidence in communities and providing early warnings of pending outbreaks. To investigate the relationship between SARS-CoV-2 concentrations in wastewater and COVID-19 incidence in communities, a 12-month study between September 1, 2020, and August 31, 2021, prior to the Omicron surge, was conducted. 407 untreated wastewater samples were collected from the Great Lakes Water Authority (GLWA) in southeastern Michigan.

View Article and Find Full Text PDF

Nannochloropsis oceanica, like other stramenopile microalgae, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA). We observed that fatty acid desaturases (FADs) involved in LC-PUFA biosynthesis were among the strongest blue light-induced genes in N. oceanica CCMP1779.

View Article and Find Full Text PDF
Article Synopsis
  • TCP transcription factors play a crucial role in regulating cell proliferation in angiosperms, but their function in earlier land plants, like liverworts, is still unclear.
  • Researchers created knockout mutants for the MpTCP1 gene in Marchantia polymorpha, revealing that these mutants exhibited reduced growth and abnormal tissue development in reproductive structures.
  • The study found that MpTCP1 interacts with DNA in a way that depends on redox conditions, influencing a network of processes related to hydrogen peroxide metabolism, which may help explain the evolutionary adaptations of early land plants to their environment.
View Article and Find Full Text PDF

Water resource recovery facility (WRRF) modeling requires robust and reliable characterization of the wastewater to be treated. Poor characterization can lead to unreliable model predictions, which can have significant economic consequences when models are used to make important facility upgrade/expansion and operational decisions. Current wastewater characterization practice often involves a limited number of relatively short-duration intensive campaigns.

View Article and Find Full Text PDF

The CC-type glutaredoxin (GRX) ROXY1 and the bZIP TGA transcription factor (TF) PERIANTHIA (PAN) interact in the nucleus and together regulate petal development. The CC-type GRXs exist exclusively in land plants, and in contrast to the ubiquitously occurring CPYC and CGFS GRX classes, only the CC-type GRXs expanded strongly during land plant evolution. Phylogenetic analyses show that TGA TFs evolved before the CC-type GRXs in charophycean algae.

View Article and Find Full Text PDF

The cyanobacterium Fremyella diplosiphon possesses 3 genes encoding homologs of the tryptophan-rich sensory protein (TSPO). TSPO proteins are membrane proteins implicated in stress responses across a range of organisms from bacteria to humans. Diverse TSPO proteins appear to generally bind tetrapyrrole ligands.

View Article and Find Full Text PDF

Tryptophan-rich sensory protein/translocator protein (TSPO) is a membrane protein involved in stress adaptation in the cyanobacterium Fremyella diplosiphon. Characterized mammalian and proteobacterial TSPO homologues bind tetrapyrroles and cholesterol ligands. We investigated the ligand binding properties of TSPO from F.

View Article and Find Full Text PDF

The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO.

View Article and Find Full Text PDF

Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis.

View Article and Find Full Text PDF

Flower monosymmetry contributes to specialized interactions between plants and their insect pollinators. In the magnoliids, flower monosymmetry is exhibited only in the Aristolochiaceae (Piperales). Aristolochia flowers develop a calyx-derived monosymmetric perianth that enhances pollination success by a flytrap mechanism.

View Article and Find Full Text PDF

Background: In the co-evolution between insects and plants, the establishment of floral monosymmetry was an important step in angiosperm development as it facilitated the interaction with insect pollinators and, by that, likely enhanced angiosperm diversification. In Antirrhinum majus, the TCP transcription factor CYCLOIDEA is the molecular key regulator driving the formation of floral monosymmetry. Although most Brassicaceae form a polysymmetric corolla, six genera develop monosymmetric flowers with two petal pairs of unequal size.

View Article and Find Full Text PDF

Background: Increased body mass index (BMI) is often found to be a risk factor for cardiac disease. However, it is unclear whether BMI also affects the gap junction remodeling process in atrial fibrillation (AF). The aim of the study was to see if BMI can influence the connexin43 (Cx43) distribution in patients with sinus rhythm (SR) and AF.

View Article and Find Full Text PDF

Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals.

View Article and Find Full Text PDF

Evolution of floral monosymmetry is thought to be a major driving force of angiosperm radiation, making angiosperms the most successful land plant group in terms of species richness. Monosymmetry evolved from a polysymmetric ancestor repeatedly in different angiosperm lineages, where it likely facilitated diversification through the interaction with insects. Most monosymmetric taxa are thus dominated by monosymmetric members.

View Article and Find Full Text PDF

PEB (phycoerythrobilin) is one of the major open-chain tetrapyrrole molecules found in cyanobacterial light-harvesting phycobiliproteins. In these organisms, two enzymes of the ferredoxin-dependent bilin reductase family work in tandem to reduce BV (biliverdin IXα) to PEB. In contrast, a single cyanophage-encoded enzyme of the same family has been identified to catalyse the identical reaction.

View Article and Find Full Text PDF

PEB (phycoerythrobilin) is a pink-coloured open-chain tetrapyrrole molecule found in the cyanobacterial light-harvesting phycobilisome. Within the phycobilisome, PEB is covalently bound via thioether bonds to conserved cysteine residues of the phycobiliprotein subunits. In cyanobacteria, biosynthesis of PEB proceeds via two subsequent two-electron reductions catalysed by the FDBRs (ferredoxin-dependent bilin reductases) PebA and PebB starting from the open-chain tetrapyrrole biliverdin IXα.

View Article and Find Full Text PDF

In contrast to the majority of cyanobacteria, the unicellular marine cyanobacterium Prochlorococcus marinus MED4 uses an intrinsic divinyl-chlorophyll-dependent light-harvesting system for photosynthesis. Despite the absence of phycobilisomes, this high-light adapted strain possesses β-phycoerythrin (CpeB), an S-type lyase (CpeS), and enzymes for the biosynthesis of phycoerythrobilin (PEB) and phycocyanobilin. Of all linear tetrapyrroles synthesized by Prochlorococcus including their 3Z- and 3E-isomers, CpeS binds both isomers of PEB and its biosynthetic precursor 15,16-dihydrobiliverdin (DHBV).

View Article and Find Full Text PDF

Prochlorococcus sp. is a very unique and highly abundant class of organisms within the cyanobacteria. Found in the world's oceans Prochlorococcus is very small in size and possesses the smallest genome of a photosynthetic autotroph.

View Article and Find Full Text PDF

Flower symmetry is considered a morphological novelty that contributed significantly to the rapid radiation of the angiosperms, which already puzzled Charles Darwin and prompted him to name this phenomenon an 'abominable mystery'. In 2009, the bicentenary of Darwin's birth and the 150th anniversary of the publication of his seminal work, 'On the Origin of Species', this question can now be more satisfactorily readdressed. Understanding the molecular control of monosymmetry formation in the model species Antirrhinum opened the path for comparative studies with non-model species revealing modifications of this trait.

View Article and Find Full Text PDF

Glutaredoxins (GRXs) have thus far been associated mainly with redox-regulated processes participating in stress responses. However, ROXY1, encoding a GRX, has recently been shown to regulate petal primorida initiation and further petal morphogenesis in Arabidopsis thaliana. ROXY1 belongs to a land plant-specific class of GRXs that has a CC-type active site motif, which deviates from ubiquitously occurring CPYC and CGFS GRXs.

View Article and Find Full Text PDF

Establishment of morphological novelties has contributed to the enormous diversification of floral architecture. One such novelty, flower monosymmetry, is assumed to have evolved several times independently during angiosperm evolution. To date, analysis of monosymmetry regulation has focused on species from taxa where monosymmetry prevails, such as the Lamiales and Fabaceae.

View Article and Find Full Text PDF