Publications by authors named "Andrea Bonicelli"

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) untargeted metabolomics has become the gold standard for the profiling of low-molecular-weight compounds. Recently, this discipline has raised great interest in forensic sciences, especially in the field of toxicology and for interval estimation. The current study aims at evaluating three extraction protocols and two LC-MS/MS assays run in both positive and negative modes, to identify the most suitable method to conduct metabolomic profiling of bone tissue.

View Article and Find Full Text PDF

Introduction: The accurate estimation of postmortem interval (PMI), the time between death and discovery of the body, is crucial in forensic science investigations as it impacts legal outcomes. PMI estimation in extremely cold environments becomes susceptible to errors and misinterpretations, especially with prolonged PMIs. This study addresses the lack of data on decomposition in extreme cold by providing the first overview of decomposition in such settings.

View Article and Find Full Text PDF

Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored.

View Article and Find Full Text PDF

The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions.

View Article and Find Full Text PDF

Considering the growing importance of microbiome analyses in forensics for identifying individuals, this study explores the transfer of the skin microbiome onto clothing, its persistence on fabrics over time, and its transferability from the environment and between different garments. Furthermore, this project compares three specific QIAGEN microbiome extraction kits to test their extraction efficiency on fabric samples. Additionally, this study aims to check if these extracts contain human DNA, providing a chance to obtain more information from the same evidence for personal identification.

View Article and Find Full Text PDF

The combined use of multiple omics allows to study complex interrelated biological processes in their entirety. We applied a combination of metabolomics, lipidomics and proteomics to human bones to investigate their combined potential to estimate time elapsed since death (i.e.

View Article and Find Full Text PDF

Measurement of the properties of bone as a material can happen in various length scales in its hierarchical and composite structure. The aim of this study was to test the tissue level properties of clinically-relevant human bone samples which were collected from donors belonging to three groups: ageing donors who suffered no fractures (Control); untreated fracture patients (Fx-Untreated) and patient who experienced hip fracture despite being treated with bisphosphonates (Fx-BisTreated). Tissue level properties were assessed by (a) nanoindentation and (b) synchrotron tensile tests (STT) where strains were measured at the 'tissue', 'fibril' and 'mineral' levels by using simultaneous Wide-angle - (WAXD) and Small angle- X-ray diffraction (SAXD).

View Article and Find Full Text PDF

Histomorphometry constitutes a valuable tool for age estimation. Histological interpopulation variability has been shown to affect the accuracy of age estimation techniques and therefore validation studies are required to test the accuracy of the pre-existing methodologies. The present research constitutes a validation study of widely known histological methods on the sixth rib and the femoral midshaft of a 19th century British population originating from Blackburn, England.

View Article and Find Full Text PDF

The study of post-mortem changes is a crucial component of forensic investigation. Human forensic taphonomic facilities (HFTFs) are the only institutions allowing the design and execution of controlled human decomposition experiments. When bodies are skeletonized, bones are normally stored in skeletal collections and used for anthropological studies.

View Article and Find Full Text PDF

Numerous intrinsic and extrinsic factors influence bone remodelling rates and have shown to affect the accuracy of histological aging methods. The present study investigates the rib cortex from two Mediterranean skeletal collections exploring the development of population-specific standards for histomorphometric age-at-death estimation. Eighty-eight standard ribs from two samples, Cretans and Greek-Cypriots, were processed histologically.

View Article and Find Full Text PDF

Bone is a hard biological tissue and a precious reservoir of information in forensic investigations as it retains key biomolecules commonly used for identification purposes. Bone proteins have recently attracted significant interest for their potential in estimating post-mortem interval (PMI) and age at death (AAD). However, the preservation of such proteins is highly dependent on intrinsic and extrinsic factors that can hinder the potential application of molecular techniques to forensic sciences.

View Article and Find Full Text PDF

Understanding what maturity entails for bone, when it arrives, and its pre- and post-maturity traits and properties are very important for understanding its evolution and physiology. There is a clear but fine distinction between the chronological age of bone (the age of its donor) and the tissue age of the bone packets it comprises at the microscopic level. Whole bone fragility changes with age due to mass and architecture effects, but so do the properties of bone at the tissue level.

View Article and Find Full Text PDF

The evaluation of bone diagenetic phenomena in archaeological timescales has a long history; however, little is known about the origins of the microbes driving bone diagenesis, nor about the extent of bone diagenesis in short timeframes-such as in forensic contexts. Previously, the analysis of non-collagenous proteins (NCPs) through bottom-up proteomics revealed the presence of potential biomarkers useful in estimating the post-mortem interval (PMI). However, there is still a great need for enhancing the understanding of the diagenetic processes taking place in forensic timeframes, and to clarify whether proteomic analyses can help to develop better models for estimating PMI reliably.

View Article and Find Full Text PDF

Bone proteomic studies using animal proxies and skeletonized human remains have delivered encouraging results in the search for potential biomarkers for precise and accurate post-mortem interval (PMI) and the age-at-death (AAD) estimation in medico-legal investigations. The development of forensic proteomics for PMI and AAD estimation is in critical need of research on human remains throughout decomposition, as currently the effects of both inter-individual biological differences and taphonomic alteration on the survival of human bone protein profiles are unclear. This study investigated the human bone proteome in four human body donors studied throughout decomposition outdoors.

View Article and Find Full Text PDF

Forensic anthropology includes, amongst other applications, the positive identification of unknown human skeletal remains. The first step in this process is an assessment of the biological profile, that is: sex, age, stature and ancestry. In forensic contexts, age estimation is one of the main challenges in the process of identification.

View Article and Find Full Text PDF

Fragmented human remains present a challenge for forensic experts as they attempt to identify individuals using standard forensic methods. Several histological age estimation techniques have been developed during the last fifty years to aid in this process. However, very few validation studies have been conducted in order to test their accuracy and bias, and thus, validation assessment is required as we employ them while testifying in court.

View Article and Find Full Text PDF

Forensic assessment of skeletal material includes age estimation of unknown individuals. When dealing with extremely fragmented human remains that lack macro-features used in age estimation, histological assessment of the skeletal elements can be employed. Historically, microscopic methods for age assessment used by forensic anthropologists have been available since 1965.

View Article and Find Full Text PDF

Establishing a biological profile of skeletal remains is a key task of forensic anthropologists. Sex estimation is essential in forensic examination, as other elements of the biological profile, such as age at death or stature, are sex dependent. Visual assessment is considered low-cost and quick, therefore it is a commonly applied method of sex estimation.

View Article and Find Full Text PDF

Age estimation remains one of the most challenging tasks in forensic practice when establishing a biological profile of unknown skeletonised remains. Morphological methods based on developmental markers of bones can provide accurate age estimates at a young age, but become highly unreliable for ages over 35 when all developmental markers disappear. This study explores the changes in the biomechanical properties of bone tissue and matrix, which continue to change with age even after skeletal maturity, and their potential value for age estimation.

View Article and Find Full Text PDF