Publications by authors named "Andrea Bertoni"

We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core-shell nanowires under a magnetic field, , up to 30 T and at temperatures in the range 4.2-200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing .

View Article and Find Full Text PDF

Carbon nanotube (CNT) photodiodes are a promising system for high-efficiency photocurrent generation due to the strong Coulomb interactions that can drive carrier multiplication. If the Coulomb interactions are too strong, however, exciton formation can hamper photocurrent generation. Here, we explore, experimentally and theoretically, the effect of the environmental dielectric constant (ε) on the photocurrent generation process in CNTs.

View Article and Find Full Text PDF

Carbon nanotube (CNT) photodiodes have the potential to convert light into electrical current with high efficiency. However, previous experiments have revealed the photocurrent quantum yield (PCQY) to be well below 100%. In this work, we show that the axial electric field increases the PCQY of CNT photodiodes.

View Article and Find Full Text PDF

The distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and correlations, even at room temperature.

View Article and Find Full Text PDF

Resonance energy transfer (RET) is an inherently anisotropic process. Even the simplest, well-known Förster theory, based on the transition dipole-dipole coupling, implicitly incorporates the anisotropic character of RET. In this theoretical work, we study possible signatures of the fundamental anisotropic character of RET in hybrid nanomaterials composed of a semiconductor nanoparticle (NP) decorated with molecular dyes.

View Article and Find Full Text PDF

We show how a proper radial modulation of the composition of core-multi-shell nanowires (NWs) critically enhances the control of the free-carrier density in the high-mobility core with respect to core-single-shell structures, thus overcoming the technological difficulty of fine tuning the remote doping density. We calculate the electron population of the different NW layers as a function of the doping density and of several geometrical parameters by means of a self-consistent Schrödinger-Poisson approach: free carriers tend to localize in the outer shell and screen the core from the electric field of the dopants.

View Article and Find Full Text PDF

We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included.

View Article and Find Full Text PDF

We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered.

View Article and Find Full Text PDF

The control of orbitals and spin states of single electrons is a key ingredient for quantum information processing and novel detection schemes and is, more generally, of great relevance for spintronics. Coulomb and spin blockade in double quantum dots enable advanced single-spin operations that would be available even for room-temperature applications with sufficiently small devices. To date, however, spin operations in double quantum dots have typically been observed at sub-kelvin temperatures, a key reason being that it is very challenging to scale a double quantum dot system while retaining independent field-effect control of individual dots.

View Article and Find Full Text PDF

Free-standing semiconductor nanowires in combination with advanced gate-architectures hold an exceptional promise as miniaturized building blocks in future integrated circuits. However, semiconductor nanowires are often corrupted by an increased number of close-by surface states, which are detrimental with respect to their optical and electronic properties. This conceptual challenge hampers their potentials in high-speed electronics and therefore new concepts are needed in order to enhance carrier mobilities.

View Article and Find Full Text PDF

We study the electronic states of core multishell semiconductor nanowires, including the effect of strong magnetic fields. We show that the multishell overgrowth of a free-standing nanowire, together with the prismatic symmetry of the substrate, may induce quantum confinement of carriers in a set of quasi-1D quantum channels corresponding to the nanowire edges. Localization and interchannel tunnel coupling are controlled by the curvature at the edges and the diameter of the underlying nanowire.

View Article and Find Full Text PDF

We use a configuration-interaction approach and the Fermi golden rule to investigate electron-phonon interaction in multielectron quantum dots. Lifetimes are computed in the low-density, highly correlated regime. We report numerical evidence that electron-electron interaction generally leads to reduced decay rates of excited electronic states in weakly confined quantum dots, where carrier relaxation is dominated by the interaction with longitudinal acoustic phonons.

View Article and Find Full Text PDF