Publications by authors named "Andrea Benassi"

The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict the transport and deposition of the aerosol. The results are compared to experimental and numerical data available in the literature to study and quantify the impact of the modeling parameters and numerical assumptions.

View Article and Find Full Text PDF

Controlling the size of powder particles is pivotal in the design of many pharmaceutical forms and the related manufacturing processes and plants. One of the most common techniques for particle size reduction in the process industry is powder milling, whose efficiency relates to the mechanical properties of the powder particles themselves. In this work, we first characterize the elastic and plastic responses of different pharmaceutical powders by measuring their Young modulus, the hardness, and the brittleness index via nano-indentation.

View Article and Find Full Text PDF

The adhesive and frictional response of an AFM tip connected to a substrate through supramolecular host-guest complexes is investigated by dynamic Monte Carlo simulations. Here, the variation of the pull-off force with the unloading rate recently observed in experiments is unraveled by evidencing simultaneous (progressive) breaking of the bonds at fast (slow) rates. The model reveals the origin of the observed plateaus in the retraction force as a function of the tip-surface distance, showing that they result from the tip geometrical features.

View Article and Find Full Text PDF

The state of vanishing friction known as superlubricity has important applications for energy saving and increasing the lifetime of devices. Superlubricity, as detected with atomic force microscopy, appears when sliding large graphite flakes or gold nanoclusters across surfaces, for example. However, the origin of the behavior is poorly understood because of the lack of a controllable nanocontact.

View Article and Find Full Text PDF

Since the demonstration of superlow friction (superlubricity) in graphite at nanoscale, one of the main challenges in the field of nano- and micromechanics was to scale this phenomenon up. A key question to be addressed is to what extent superlubricity could persist, and what mechanisms could lead to its failure. Here, using an edge-driven Frenkel-Kontorova model, we establish a connection between the critical length above which superlubricity disappears and both intrinsic material properties and experimental parameters.

View Article and Find Full Text PDF

Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions.

View Article and Find Full Text PDF

The surface of a crystal made of roughly spherical molecules exposes, above its bulk rotational phase transition at T = Tr, a carpet of freely rotating molecules, possibly functioning as "nanobearings" in sliding friction. We explored by extensive molecular dynamics simulations the frictional and adhesion changes experienced by a sliding C60 flake on the surface of the prototype system C60 fullerite. At fixed flake orientation both quantities exhibit only a modest frictional drop of order 20% across the transition.

View Article and Find Full Text PDF

Models of exchange-bias in thin films have been able to describe various aspects of this technologically relevant effect. Through appropriate choices of free parameters the modelled hysteresis loops adequately match experiment, and typical domain structures can be simulated. However, the use of these parameters, notably the coupling strength between the systems' ferromagnetic (F) and antiferromagnetic (AF) layers, obscures conclusions about their influence on the magnetization reversal processes.

View Article and Find Full Text PDF

We present the absorption coefficient alpha(omega), the transverse dielectric function epsilon(omega), the optical conductivity sigma(omega), and the reflectance R(omega) calculated for an emeraldine salt conducting polymer in its crystalline 3D polaronic structure. We utilize Kohn-Sham density functional theory (DFT) electronic wavefunctions and energies implemented in the expression of the macroscopic transverse dielectric function in the framework of the band theory without the electron-hole interaction. Contributions of intra-band transitions are taken into account by adding a Drude-like term to the dielectric function calculated ab initio.

View Article and Find Full Text PDF