The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail.
View Article and Find Full Text PDFPartial nitritation-anammox (PN/A) process will substantially reduce the costs for the removal of nitrogen in the mainstream of municipal sewage. However, one of the mainstream PN/A challenges is to reduce the time necessary for the adaptation of anammox bacteria to lower temperatures in mild climates. In this study, we exposed anammox flocculent culture to cold shocks [35°C → 5°C (8 h) → 15°C] and evaluated long-term cold shock response.
View Article and Find Full Text PDFThis work focuses on the removal of ammonia nitrogen pollution from wastewaters in a two-stage laboratory model based on a combination of the nitritation and anammox processes with the biomass immobilized in a polyvinyl alcohol (PVA) matrix. Owing to the immobilization approach inside the PVA pellets, the bacterial activity remained nearly unchanged on an abrupt change in the environmental conditions. The nitritation kinetics were significantly dependent on the dissolved oxygen concentration.
View Article and Find Full Text PDF