Publications by authors named "Andrea Balreira"

Ataxia oculomotor apraxia type 1 (AOA1) is an autosomal recessive disease caused by mutations in APTX, which encodes the DNA strand-break repair protein aprataxin (APTX). CoQ10 deficiency has been identified in fibroblasts and muscle of AOA1 patients carrying the common W279X mutation, and aprataxin has been localized to mitochondria in neuroblastoma cells, where it enhances preservation of mitochondrial function. In this study, we show that aprataxin deficiency impairs mitochondrial function, independent of its role in mitochondrial DNA repair.

View Article and Find Full Text PDF

Inherited ataxias are heterogeneous disorders affecting both children and adults, with over 40 different causative genes, making molecular genetic diagnosis challenging. Although recent advances in next-generation sequencing have significantly improved mutation detection, few treatments exist for patients with inherited ataxia. In two patients with adult-onset cerebellar ataxia and coenzyme Q10 (CoQ10) deficiency in muscle, whole exome sequencing revealed mutations in ANO10, which encodes anoctamin 10, a member of a family of putative calcium-activated chloride channels, and the causative gene for autosomal recessive spinocerebellar ataxia-10 (SCAR10).

View Article and Find Full Text PDF

Lysosomal integral membrane protein-2 (LIMP2) mediates trafficking of glucocerebrosidase (GBA) to lysosomes. Deficiency of LIMP2 causes action myoclonus-renal failure syndrome (AMRF). LIMP2-deficient fibroblasts virtually lack GBA like the cells of patients with Gaucher disease (GD), a lysosomal storage disorder caused by mutations in the GBA gene.

View Article and Find Full Text PDF

Action myoclonus-renal failure syndrome (AMRF) is considered a rare form of progressive myoclonus epilepsy (PME) associated with renal failure. A mutation on the gene encoding the lysosomal integral membrane protein type 2-LIMP-2 (SCARB2), the receptor responsible for targeting glucocerebrosidase to the lysosomes, was recently described, allowing a better understanding of its etiopathogenesis. We describe clinically two sisters with AMRF that resulted from a mutation in the SCARB2 gene.

View Article and Find Full Text PDF

Gaucher disease (GD) is associated with upregulation of CD1d and MHC-class II expression by monocytes. While the physiological impact of CD1d upregulation remains uncertain, it has been proposed that MHC-class II upregulation is associated with inflammation. Hereby, we show that the decrease in MHC-class II expression seen in GD patients under therapy correlates positively with chitotriosidase activity, a marker of inflamed macrophages.

View Article and Find Full Text PDF

The main clinical features of two siblings from a consanguineous marriage were progressive myoclonic epilepsy without intellectual impairment and a nephrotic syndrome with a strong accumulation of C1q in capillary loops and mesangium of kidney. The biochemical analysis of one of the patients revealed a normal beta-glucocerebrosidase activity in leukocytes, but a severe enzymatic deficiency in cultured skin fibroblasts. This deficiency suggested a defect in the intracellular sorting pathway of this enzyme.

View Article and Find Full Text PDF

Gaucher disease (GD) is an autosomal recessive inherited defect of the lysosomal enzyme glucocerebrosidase (GluCerase) that leads to glucosylceramide (GluCer) accumulation. We previously demonstrated the existence of imbalances in certain lymphocyte populations in GD patients. We now show that GluCerase-deficient monocytes from GD patients or monocytes from healthy subjects treated with conduritol-B-epoxide (CBE), an irreversible inhibitor of GluCerase activity, display high levels of surface expression of the lipid-binding molecule CD1d.

View Article and Find Full Text PDF