Publications by authors named "Andrea Avella"

The redundancy present within the musculoskeletal system may offer a non-invasive source of signals for movement augmentation, where the set of muscle activations that do not produce force/torque (muscle-to-force null-space) could be controlled simultaneously to the natural limbs. Here, we investigated the viability of extracting movement augmentation control signals from the muscles of the wrist complex. Our study assessed (i) if controlled variation of the muscle activation patterns in the wrist joint's null-space is possible; and (ii) whether force and null-space cursor targets could be reached concurrently.

View Article and Find Full Text PDF

According to the modular hypothesis for the control of movement, muscles are recruited in synergies, which capture muscle coordination in space, time, or both. In the last two decades, muscle synergy analysis has become a well-established framework in the motor control field and for the characterization of motor impairments in neurological patients. Altered modular control during a locomotion task has been often proposed as a potential quantitative metric for characterizing pathological conditions.

View Article and Find Full Text PDF

Sensor-based assessments in medical practice and rehabilitation include the measurement of physiological signals such as EEG, EMG, ECG, heart rate, and NIRS, and the recording of movement kinematics and interaction forces. Such measurements are commonly employed in clinics with the aim of assessing patients' pathologies, but so far some of them have found full exploitation mainly for research purposes. In fact, even though the data they allow to gather may shed light on physiopathology and mechanisms underlying motor recovery in rehabilitation, their practical use in the clinical environment is mainly devoted to research studies, with a very reduced impact on clinical practice.

View Article and Find Full Text PDF

Muscle synergies are defined as coordinated recruitment of groups of muscles with specific activation balances and time profiles aimed at generating task-specific motor commands. While muscle synergies in postural control have been investigated primarily in reactive balance conditions, the neuromechanical contribution of muscle synergies during voluntary control of upright standing is still unclear. In this study, muscle synergies were investigated during the generation of isometric force at the trunk during the maintenance of standing posture.

View Article and Find Full Text PDF

Background And Objective: A new direction in the study of motor control was opened about two decades ago with the introduction of a model for the generation of motor commands as combination of muscle synergies. Muscle synergies provide a simple yet quantitative framework for analyzing the hierarchical and modular architecture of the human motor system. However, to gain insights on the functional role of muscle synergies, they should be related to the task space.

View Article and Find Full Text PDF

Effective upper-limb rehabilitation for severely impaired stroke survivors is still missing. Recent studies endorse novel motor rehabilitation approaches such as robotic exoskeletons and virtual reality systems to restore the function of the paretic limb of stroke survivors. However, the optimal way to promote the functional reorganization of the central nervous system after a stroke has yet to be uncovered.

View Article and Find Full Text PDF

The central nervous system (CNS) may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of cocontraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. Although it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing.

View Article and Find Full Text PDF

Magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS) is a non-invasive thermal ablation method that involves high-intensity focused ultrasound surgery (FUS) and Magnetic Resonance Imaging for anatomical imaging and real-time thermal mapping. This technique is widely employed for the treatment of patients affected by essential tremor (ET) and Parkinson's disease (PD). In the current study, functional near-infrared spectroscopy (fNIRS) was used to highlight hemodynamics changes in cerebral cortex activity, during a simple hand motor task, i.

View Article and Find Full Text PDF
Article Synopsis
  • The synergy hypothesis posits that the motor system utilizes limited muscle synergies that vary depending on the task at hand, but current algorithms mainly focus on muscle patterns without considering task relevance.
  • The proposed FCNMF algorithm introduces a new approach that incorporates task-specific considerations by penalizing errors in force reconstruction, leading to more accurate results.
  • Results show that FCNMF outperforms traditional NMF algorithms in reconstructing muscle activity trajectories, even in noisy conditions, and effectively applies to EMG data in isometric tasks, indicating its potential for enhancing motor coordination strategies.
View Article and Find Full Text PDF

Under the synergy hypothesis, novel muscle synergies may be required for motor skill learning. We have developed a "virtual surgery" experimental paradigm that alters the mapping of muscle activations onto virtual cursor motion during an isometric reaching task using myoelectric control. By creating virtual surgeries that are "incompatible" with the original synergies, we can investigate learning new muscle synergies in controlled experimental conditions.

View Article and Find Full Text PDF

Introduction: Virtual reality (VR) is an advanced technology that creates simulated environments and conditions. By offering the possibility of combining motor, cognitive, and well-being in conjunction with the potential to manipulate multi-sensorial features in a safe environment, VR has emerged as a promising powerful rehabilitation tool. Among advanced VR systems, various authors have highlighted promising effects in the rehabilitation of the computer-assisted rehabilitation environment (CAREN - Motekforce Link; Amsterdam, The Netherlands).

View Article and Find Full Text PDF

The transitions between sitting and standing have a high physical and coordination demand, frequently causing falls in older individuals. Rollators, or four-wheeled walkers, are often prescribed to reduce lower-limb load and to improve balance but have been found a fall risk. This study investigated how rollator support affects sit-to-stand and stand-to-sit movements.

View Article and Find Full Text PDF

Motor skill learning requires the acquisition of novel muscle patterns and a new control policy-a process that requires time. In contrast, motor adaptation often requires only the adjustment of existing muscle patterns-a fast process. By altering the mapping of muscle activations onto cursor movements in a myoelectrically controlled virtual environment, we are able to create perturbations that require either the recombination of existing muscle synergies (compatible virtual surgery) or the learning of novel muscle patterns (incompatible virtual surgery).

View Article and Find Full Text PDF

In the last two decades, muscle synergies analysis has been commonly used to assess the neurophysiological mechanisms underlying human motor control. Several synergy models and algorithms have been employed for processing the electromyographic (EMG) signal, and it has been shown that the coordination of motor control is characterized by the presence of phasic (movement-related) and tonic (anti-gravity and related to co-contraction) EMG components. Neural substrates indicate that phasic and tonic components have non-homogeneous origin; however, it is still unclear if these components are generated by the same set of synergies or by distinct synergies.

View Article and Find Full Text PDF

Estimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e.

View Article and Find Full Text PDF

Muscle synergy analysis investigates the neurophysiological mechanisms that the central nervous system employs to coordinate muscles. Several models have been developed to decompose electromyographic (EMG) signals into spatial and temporal synergies. However, using multiple approaches can complicate the interpretation of results.

View Article and Find Full Text PDF

In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary arterial hypertension (PAH) is common in patients with hypertrophic cardiomyopathy (HCM) and negatively affects their health outlook, especially during exercise.
  • A study involving 182 HCM patients used cardiopulmonary exercise tests (CPET) and echocardiography to identify exercise-induced PAH (EiPAH), finding that 20% of patients experienced significant increases in pulmonary pressure during exertion.
  • The presence of EiPAH was linked to poorer exercise performance and increased risk of HCM-related complications, suggesting that diagnosing it early can lead to better monitoring and treatment options for patients.
View Article and Find Full Text PDF

Predicting the outcome of observed actions is fundamental for efficient interpersonal interactions. This is evident in interceptive sports, where predicting the future ball trajectory could make apart success and fail. We quantitatively assessed the predictive abilities of non-trained adults intercepting thrown balls in immersive virtual reality.

View Article and Find Full Text PDF

A large body of evidence suggests that human and animal movements, despite their apparent complexity and flexibility, are remarkably structured. Quantitative analyses of various classes of motor behaviors consistently identify spatial and temporal features that are invariant across movements. Such invariant features have been observed at different levels of organization in the motor system, including the electromyographic, kinematic, and kinetic levels, and are thought to reflect fixed modules-named motor primitives-that the brain uses to simplify the construction of movement.

View Article and Find Full Text PDF

The Fugl-Meyer Assessment is widely used to test motor function in stroke survivors. In the Fugl-Meyer Assessment, stroke survivors perform several movement tasks and clinicians subjectively rate the performance of each task item. The individual task items in the Fugl-Meyer Assessment are selected on the basis of clinical experience, and their physiological relevance has not yet been evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has shown that while kinematic and kinetic measurements are useful for assessing walking performance in exoskeletons, they fall short in providing insight into neural control strategies and muscle coordination.
  • The PEPATO software has been developed as a benchmarking tool to evaluate changes in spinal cord activity during walking in exoskeletons, correlating this data with normal walking references.
  • An example demonstrated the software's capability to analyze EMG activity during walking in a specially designed exoskeleton, revealing significant insights into muscle activation patterns and spinal motor control, crucial for rehabilitation.
View Article and Find Full Text PDF

Assessing maximum voluntary bite force is important to characterize the functional state of the masticatory system. Due to several factors affecting the estimation of the maximum bite force, a unique solution combining desirable features such as reliability, accuracy, precision, usability, and comfort is not available. The aim of the present study was to develop a low-cost bite force measurement device allowing for subject-specific customization, comfortable bite force expression, and reliable force estimation over time.

View Article and Find Full Text PDF

Humans have a remarkable capacity to learn new motor skills, a process that requires novel muscle activity patterns. Muscle synergies may simplify the generation of muscle patterns through the selection of a small number of synergy combinations. Learning of new motor skills may then be achieved by acquiring novel muscle synergies.

View Article and Find Full Text PDF