Publications by authors named "Andrea Asperti"

Person re-identification (re-id) is a critical computer vision task aimed at identifying individuals across multiple non-overlapping cameras, with wide-ranging applications in intelligent surveillance systems. Despite recent advances, the domain gap-performance degradation when models encounter unseen datasets-remains a critical challenge. CLIP-based models, leveraging multimodal pre-training, offer potential for mitigating this issue by aligning visual and textual representations.

View Article and Find Full Text PDF

Person Re-identification is the task of recognizing comparable subjects across a network of nonoverlapping cameras. This is typically achieved by extracting from the source image a vector of characteristic features of the specific person captured by the camera. Learning a good set of robust, invariant and discriminative features is a complex task, often leveraging contrastive learning.

View Article and Find Full Text PDF