Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS.
View Article and Find Full Text PDFBackground: Microglia, an immune cell found exclusively within the CNS, initially develop from haematopoietic stem cell precursors in the yolk sac and colonise all regions of the CNS early in development. Microglia have been demonstrated to play an important role in the development of oligodendrocytes, the myelin producing cells in the CNS, as well as in myelination. Mertk is a receptor expressed on microglia that mediates immunoregulatory functions, including myelin efferocytosis.
View Article and Find Full Text PDFMicroglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs.
View Article and Find Full Text PDFCladribine (2-chlorodeoxyadenosine, 2CdA) is one of the most effective disease-modifying drugs for multiple sclerosis (MS). Cladribine is a synthetic purine nucleoside analog that induces cell death of lymphocytes and oral cladribine treatment leads to a long-lasting disease stabilization, potentially attributable to immune reconstitution. In addition to its effects on lymphocytes, cladribine has been shown to have immunomodulatory effects on innate immune cells, including dendritic cells and monocytes, which could also contribute to its therapeutic efficacy.
View Article and Find Full Text PDFMyelination within the central nervous system (CNS) is crucial for the conduction of action potentials by neurons. Variation in compact myelin morphology and the structure of the paranode are hypothesised to have significant impact on the speed of action potentials. There are, however, limited experimental data investigating the impact of changes in myelin structure upon conductivity in the central nervous system.
View Article and Find Full Text PDFMER tyrosine kinase (MERTK) upregulation is associated with M2 polarization of microglia, which plays a vital role in neuroregeneration following damage induced by neuroinflammatory diseases such as multiple sclerosis (MS). Therefore, a radiotracer specific for MERTK could be of great utility in the clinical management of MS, for the detection and differentiation of neuroregenerative and neurodegenerative processes. This study aimed to develop an [F] ligand with high affinity and selectivity for MERTK as a potential positron emission tomography (PET) radiotracer.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Major deficits arise in MS patients due to an inability to repair damaged myelin sheaths following CNS insult, resulting in prolonged axonal exposure and neurodegeneration. The TAM receptors (Tyro3, Axl, and Mertk) have been implicated in MS susceptibility, demyelination and remyelination.
View Article and Find Full Text PDFMyelin is an essential component of the mammalian nervous system, facilitating rapid conduction of electrical impulses by axons, as well as providing trophic support to neurons. Within the central nervous system, the oligodendrocyte is the specialized neural cell responsible for producing myelin by a process that is thought to be regulated by both activity dependent and independent mechanisms but in incompletely understood ways. We have previously identified that the protein Gas6, a ligand for a family of tyrosine kinase receptors known as the TAM (Tyro3, Axl, and Mertk) receptors, directly increases oligodendrocyte induced myelination in vitro.
View Article and Find Full Text PDFSoluble P-selectin (sP-selectin), a biomarker of inflammatory related pathologies including cardiovascular and peripheral vascular diseases, also has pro-atherosclerotic effects including the ability to increase leukocyte recruitment and modulate thrombotic responses in vivo. The current study explores its role in progressing atherosclerotic plaque disease. Apoe-/- mice placed on a high fat diet (HFD) were given daily injections of recombinant dimeric murine P-selectin (22.
View Article and Find Full Text PDFWith animal models, death as an intentional end point is ethically unacceptable. However, in the study of septic shock, death is still considered the only relevant end point. We defined eight humane end points into four stages of severity (from healthy to moribund) and used to design a clinically relevant scoring tool, termed "the mouse clinical assessment score for sepsis" (M-CASS).
View Article and Find Full Text PDFLittle is known about the endothelial mechanisms involved in the anti-inflammatory effects of interleukin 10 (IL-10). The goal of this study was to evaluate the effects of IL-10 on endothelial oxidative stress and endothelial inflammation induced by tumor necrosis factor α (TNF-α). Production of reactive oxygen species (ROS) in perfused human umbilical vein endothelial cells (HUVECs) was studied by fluorescent microscopy using dichlorodihydrofluorescein diacetate.
View Article and Find Full Text PDFRaising high-density lipoprotein (HDL) levels is proposed as an attractive target to treat cardiovascular disease. However, a number of clinical studies examining the effect of HDL-raising therapies have been prematurely halted due to futility. Therefore there is a need for alternative therapies.
View Article and Find Full Text PDFPeriodontal disease is an oral inflammatory disease affecting the supporting structures of teeth. Porphyromonas gingivalis, a major pathogenic agent for the disease, expresses a number of virulence factors, including cysteine proteases called the gingipains. The arginine- and lysine-specific gingipains, HRgpA and Kgp, respectively, are expressed as high molecular weight forms containing both catalytic and adhesin subunits.
View Article and Find Full Text PDFGlycoprotein (GP) Ib-IX-V binds von Willebrand factor (VWF), initiating thrombosis at high shear stress. The VWF-A1 domain binds the N-terminal domain of GPIbalpha (His1-Glu282); this region contains seven leucine-rich repeats (LRR) plus N- and C-terminal flanking sequences and an anionic sequence containing three sulfated tyrosines. Our previous analysis of canine/human and human/canine chimeras of GPIbalpha expressed on Chinese hamster ovary (CHO) cells demonstrated that LRR2-4 (Leu60-Glu128) were crucial for GPIbalpha-dependent adhesion to VWF.
View Article and Find Full Text PDFPlatelet glycoprotein Ib-IX-V (GPIb-IX-V) mediates adhesion to von Willebrand factor (vWF) in (patho)physiological thrombus formation. vWF binds the N-terminal 282 residues of GPIb alpha, consisting of an N-terminal flank (His1-Ile35), 7 leucine-rich repeats (Leu36-Ala200), a C-terminal flank (Phe201-Gly268), and a sulfated tyrosine sequence (Asp269-Glu282). By expressing canine-human chimeras of GPIb alpha on Chinese hamster ovary cells, binding sites for functional anti-GPIb alpha antibodies to individual domains were previously mapped, and it was shown that leucine-rich repeats 2 to 4 were required for optimal vWF recognition under static or flow conditions.
View Article and Find Full Text PDF